Skip to main content
Log in

Effects of the Fenton reagent on transport in yeast

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In the facultatively anaerobic yeastSaccharomyces cerevisiae the uptake rate and the accumulation ratio of 2-aminoisobutyric acid was decreased by some 30% by Fenton's reagent (FR), a powerful source of OH… radicals. Likewise, the uptake of glutamic acid, leucine and arginine was diminished. The mediated diffusion of 6-deoxy-d-glucose was not affected. The H+ symport of maltose and trehalose was inhibited by some 40% both in the initial rate and in the accumulation ratio. FR had a dramatic inhibitory effect when present during preincubation with 50 mmol/L glucose. In the obligately aerobicLodderomyces elongisporus the uptake of all amino acids tested was decreased by 15–30%, that of 6-deoxy-d-glucose by about 10%. The initial rates of uptake of maltose and trehalose were depressed by FR by 40% and the acceleration of uptake observed after 8 min of incubation, was abolished by FR completely. Acidification rate of the external medium byS. cerevisiae in the presence of glucose or galactose was enhanced three-fold, that after subsequently added K+ was substantially decreased. FR appears to have a dual effect on sugar and amino acid transport processes in yeast: (1) it blocks carrier protein synthesis, (2) it inhibits the source of energy for transport. It does not appreciably affect the carrier proteins themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Janda S., Beneš I., Opekarová M., Šťastná J., Tauchová R.: Effect of hydrogen peroxide on the aerobic yeastRhodotorula glutinis.Microbios Lett. 43, 37–42 (1990).

    CAS  Google Scholar 

  • Janda S., Gille G., Sigler K., Höfer M.: Effect of hydrogen peroxide on sugar transport inSchizosachaaromyces pombe. Absence of membrane lipid peroxidation.Folia Microbiol. 38, 135–140 (1993).

    CAS  Google Scholar 

  • Kotyk A.: Dependence of kinetics of secondary active transport in yeast on H+-ATPase acidification.J. Membr. Biol. 138, 29–35 (1994).

    PubMed  CAS  Google Scholar 

  • Kotyk A.: Kinetic studies of transport in yeast.Meth. Enzymol. 174, 567–591 (1989).

    CAS  Google Scholar 

  • Kotyk A., Georghiou G.: Effects of the physiological state of five yeast species on H+-ATPase-related processes.Folia Microbiol. 38, 467–472 (1993).

    Article  CAS  Google Scholar 

  • Kotyk A., Georghiou G.: Both glucose-type monosaccharides and one of their metabolites are required for activation of yeast plasma membrane ATPase.Cell Biol. Internat. 18, 813–817 (1994).

    Article  CAS  Google Scholar 

  • Kotyk A., Lapathitis G.: Dicarbanonaborates in yeast respiration and membrane transport.Biochem. Mol. Biol. Internat. 41, 933–940 (1997).

    CAS  Google Scholar 

  • Kotyk A., Michalianičová D.: Uptake of trehalose bySaccharomyces cerevisiae.J. Gen. Microbiol. 110, 323–332 (1979).

    PubMed  CAS  Google Scholar 

  • Kotyk A., Říhová L.: Transport of α-aminoisobutyric acid inSaccharomyces cerevisiae. Feedback control.Biochim. Biophys. Acta 288, 380–389 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A., Ponec M., Říhová L.: Uptake of amino acids by actidione-treated yeast cells. I. Specificity of carriers.Folia Microbiol. 16, 432–444 (1971).

    Article  CAS  Google Scholar 

  • Kotyk A., Michaljaničová D., Vereš K., Soukupová V.: Transport of 4-deoxy-and 6-deoxy-d-glucose in baker's yeast.Folia Microbiol. 20, 361–367 (1975).

    Google Scholar 

  • Kotyk A., Horák J., Knotková A.: Transport protein synthesis in nongrowing yeast cells.Biochim. Biophys. Acta 698, 243–251 (1982).

    PubMed  CAS  Google Scholar 

  • Lapathitis G., Kotyk A.: Different sources of acidity in glucose-elicited extracellular acidification in the yeastSaccharomyces cerevisiae.Biochem. Mol. Biol. Internat. 46, 973–978 (1998a).

    CAS  Google Scholar 

  • Lapathitis G., Kotyk A.: Univalent cation fluxes in yeast.Biochem. Mol. Biol. Internat. 44, 371–380 (1998b).

    CAS  Google Scholar 

  • Neal J.L.: Analysis of Michaelis kinetics for two independent, saturable membrane transport functions.J. Theor. Biol. 35, 113–118 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Navarro A.: Potassium transport in fungi and plants.Biochim. Biophys. Acta 1469,1–30 (2000).

    PubMed  Google Scholar 

  • Sigler K., Denksteinová B., Gášková D., Stadler N., Radovanovič N., Höfer M.: Effect of stressors on yeast plasma membrane integrity, proton gradient and H+-ATPase function.Folia Microbiol. 43, 229–230 (1998a).

    Google Scholar 

  • Sigler K., Gille G., Vacata V., Stadler N., Höfer M.: Inactivation of the plasma membrane ATPase ofSchizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradicalvs. radical-induced oxidation.Folia Microbiol. 43, 361–367 (1998b).

    CAS  Google Scholar 

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms—I. Microbialvs. higher cells—damage and defenses in relation to cell aging and death.Folia Microbiol. 44, 587–624 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khansuwan, U., Kotyk, A. Effects of the Fenton reagent on transport in yeast. Folia Microbiol 45, 515–520 (2000). https://doi.org/10.1007/BF02818720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818720

Keywords

Navigation