Skip to main content
Log in

MOCVD grown CdZn Te/GaAs/Si substrates for large-area HgCdTe IRFPAs

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Large-area HgCdTe 480×640 thermal-expansion-matched hybrid focal plane arrays were achieved by substituting metalorganic chemical vapor deposition (MOCVD)-grown CdZnTe/GaAs/Si alternative substrate in place of bulk CdZnTe substrates for the growth of HgCdTe p-on-n double-layer heterojunctions by controllably-doped mercury-melt liquid phase epitaxy (LPE). (100) CdZnTe was grown by MOCVD on GaAs/Si using a vertical-flow high-speed rotating disk reactor which incorporates up to three two-inch diameter substrates. Layers having specular surface morphology, good crystalline structure, and surface macro defect densities <50 cm−2 are routinely achieved and both the composition uniformity and run-to-run reproducibility were very good. As the composition of the CdZnTe layers increases, the x-ray full width at half maximum (FWHM) increases; this is a characteristic of CdZnTe grown by VPE techniques and is apparently associated with phase separation. Despite a broader x-ray FWHM for the fernary CdZnTe, the FWHM of HgCdTe grown by LPE on these substrates decreases, particularly for [ZnTe] compositions near the lattice matching condition to HgCdTe. An additional benefit of the ternary CdZnTe is an improved surface morphology of the HgCdTe layers. Using these silicon-based substrates, we have demonstrated 78K high-performance LWIR HgCdTe 480×640 arrays and find that their performance is comparable to similar arrays fabricated on bulk CdZnTe substrates for temperatures exceeding approximately 78K. The performance at lower temperatures is apparently limited by the dislocation density which is typically in the low-mid 106 cm−2 range for these heteroepitaxial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kay, R. Bean, K. Zanio, C. Ito and D. McIntyre,Appl. Phys. Lett. 51, 2211 (1987).

    Article  CAS  Google Scholar 

  2. A. Nouhi, G. Radhakrishnan, J. Katz and K. Koliwad,Appl. Phys. Lett. 52, 2028 (1988).

    Article  CAS  Google Scholar 

  3. N.W. Cody, U. Sudarsan and R. Solanki,J. Appl. Phys. 66, 449 (1989).

    Article  CAS  Google Scholar 

  4. W.L. Ahlgren, S.M. Johnson, E.J. Smith, R.P. Ruth, B.C. Johnston, M.H. Kalisher, C.A. Cockrum, T.W. James, D.L. Arney, C.K. Ziegler and W. Lick,J. Vac. Sci. Technol. A 7, 331 (1989).

    Article  CAS  Google Scholar 

  5. D.D. Edwall, J. Bajaj and E.R. Gertner,J. Vac. Sci. Technol. A 8, 1054 (1990).

    Article  Google Scholar 

  6. K. Zanio, R. Bean, R. Matson, P. Vu, S. Taylor, D. McIntyre, G. Ito and M. Chu,Appl. Phys. Lett. 56, 1207 (1990).

    Article  CAS  Google Scholar 

  7. L.O. Bubulac, D.D. Edwall and C.R. Viswanathan,J. Vac. Sci. Technol. B 9 1695 (1991).

    Article  CAS  Google Scholar 

  8. S.J.C. Irvine, D.D. Edwall, L.O. Bubulac, R.V. Gil and E.R. Gertner,J. Vac. Sci. Technol. B. 10, 1392 (1992).

    Article  CAS  Google Scholar 

  9. J.M. Arias, M. Zandian, S.H. Shin, W.V. McLevige, J.G. Pasko and R.E. DeWames,J. Vac. Sci. Technol. B 9, 1646 (1991).

    Article  CAS  Google Scholar 

  10. S.H. Shin, J.M. Arias, D.D. Edwall, M. Zandian, J.G. Pasko and R.E. DeWames,J. Vac. Sci. Technol. B 10, 1492 (1992).

    Article  CAS  Google Scholar 

  11. R. Korenstein, P. Madison and P. Hallock,J. Vac. Sci. Technol. B. 10, 1370 (1992).

    Article  CAS  Google Scholar 

  12. W.-S. Wang, H. Ehsani and I.B. Bhat, these proceedings.

  13. S.M. Johnson, M.H. Kalisher, W.L. Ahlgren, J.B. James and G.A. Cockrum,Appl. Phys. Lett. 56, 946 (1990).

    Article  CAS  Google Scholar 

  14. S.M. Johnson, W.L. Ahlgren, M.H. Kalisher, J.B. James and W.J. Hamilton,Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems, Mater. Res. Soc. Symp. Proc., eds. F.J. Bartoli, H.F. Schaake and J.F. Schetzina (Mater. Res. Soc. Pittsburgh, PA, 1990), Vol. 161, p. 351.

    Google Scholar 

  15. S.M. Johnson, J.B. James, W.L. Ahlgren, W.J. Hamilton, M. Ray and G.S. Tompa,Long-Wavelength Semiconductor Devices, Materials, and Processes, Mater. Res. Soc. Symp. Proc., eds. A. Katz, R.M. Biefeld, R.L. Gunshor and R.J. Malik (Mater. Res. Soc. Pittsburgh, PA, 1991), Vol. 216, p. 141.

    Google Scholar 

  16. D. Rajavel and J.J. Zinck, these proceedings.

  17. L.O. Bubulac, D.D. Edwall and C.R. Viswanathan,J. Vac. Sci. Technol. B 9, 1695 (1991).

    Article  CAS  Google Scholar 

  18. Y. Lo R.N. Bicknell, T.H. Myers and J.F. Schetzina,J. Appl. Phys. 54, 4238 (1983).

    Article  CAS  Google Scholar 

  19. R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, M. Boukerch and J.P. Faurie,Appl. Phys. Lett. 55, 1879 (1989).

    Article  CAS  Google Scholar 

  20. R. Sporken, M.D. Lange, C. Massetand, J.P. Faurie,Appl. Phys. Lett. 57, 1449 (1990).

    Article  CAS  Google Scholar 

  21. R. Sporken, M.D. Lange and J.P. Faurie,J. Vac. Sci. Technol. B 9, 1651 (1991).

    Article  CAS  Google Scholar 

  22. R. Sporken, M.D. Lange, S. Sivananthan and J.P. Faurie,Appl. Phys. Lett. 59, 81 (1991).

    Article  CAS  Google Scholar 

  23. R. Sporken, Y.P. Chen, S. Sivananthan, M.D. Lange and J.P. Faurie,J. Vac. Sci. Technol. B 10, 1405 (1992).

    Article  CAS  Google Scholar 

  24. Y.P. Chen, S. Sivananthan and J.P. Faurie, these proceedings.

  25. R.L. Chou, M.S. Lin and K.S. Chou,Appl. Phys. Lett. 48, 523 (1986).

    Article  CAS  Google Scholar 

  26. M.S. Lin, R.L. Chou and K.S. Chou,J. Cryst. Growth 77, 475 (1986).

    Article  CAS  Google Scholar 

  27. H. Zogg and S. Blunier,Appl. Phys. Lett. 49, 1531 (1986).

    Article  CAS  Google Scholar 

  28. A.N. Tiwari, W. Floeder, S. Blunier, H. Zogg and H. Weibel,Appl. Phys. Lett. 57, 1108 (1990).

    Article  CAS  Google Scholar 

  29. H. Shtrikman, M. Oron, A. Raizman and G. Cinader,J. Electron. Mater. 17, 105 (1988).

    Article  CAS  Google Scholar 

  30. S.M. Johnson, J.B. James, W.L. Ahlgren, W.J. Hamilton and M. Ray,Appl. Phys. Lett. 59, 2055 (1991).

    Article  CAS  Google Scholar 

  31. M.D. Lange, R. Sporken, K.K. Mahavdi, J.P. Faurie, Y. Nakamura and N. Otsuka,Appl. Phys. Lett. 58, 1988 (1991).

    Article  CAS  Google Scholar 

  32. T. Sasaki, M.H. Tomono and N. Oda.J. Vac. Sci. Technol. B 10, 1399 (1992).

    Article  CAS  Google Scholar 

  33. T. Tung, M.H. Kalisher, A.P. Stevens and P.E. Herning,Materials for Infrared Detectors and Sources, Mater. Res. Soc. Symp. Proc., eds. R.F.C. Farrow, J.F. Schetzina and J.T. Cheung, Mater. Res. Soc. Pittsburgh, PA, 1987), Vol. 90, p. 321.

    Google Scholar 

  34. T. Tung,J. Cryst. Growth 86, 161 (1988).

    Article  CAS  Google Scholar 

  35. T. Tung, L.V. DeArmond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens and S.J. Tighe, (Soc. Phot. Opt. Inst. Eng. 1735, Benningham, WA 1992), in print.

  36. W.L. Bond,Acta Cryst. 13, 814 (1960).

    Article  CAS  Google Scholar 

  37. S.M. Johnson, S. Sen, W.H. Konkel and M.H. Kalisher,J. Vac. Sci. Technol. B 9, 1897 (1991).

    Article  CAS  Google Scholar 

  38. W.J. Hamilton, S.M. Johnson and W.L. Ahlgren,J. Vac. Sci. Technol. B 10, 1543 (1992).

    Article  CAS  Google Scholar 

  39. R.D. Feldman, R.F. Austin, A.H. Dayem and E.H. Westerwick.Appl. Phys. Lett. 49, 797 (1986).

    Article  CAS  Google Scholar 

  40. R.D. Feldman, R.F. Austin, P.H. Fuoss, A.H. Dayem, E.H. Westerwick, S. Nakahara, T. Boone, H. Menéndez, A. Pinczuk, H.P. Valladares and S. Brennan,J. Vac. Sci. Technol. B 5, 690 (1987).

    Article  CAS  Google Scholar 

  41. C.J. Summers, A. Torabi, B.K. Wagner, J.D. Benson, S.R. Stock and P.C. Huang,Materials Technologies for IR Detectors, eds. J. Besson (Soc. Phot. Opt. Inst. Eng. 659, Bellingham, WA 1986), p. 153.

  42. S.M. Johnson, W.L. Ahlgren, M.T. Smith, B.C. Johnston and S. Sen,Advances in Materials Processing, and Devices in III–V Compound Semiconductors, Mater. Res. Soc. Symp. Proc. eds. D.K. Sadana, L.E. Eastman and R. Dupuis Mater. Res. Soc., Pittsburgh, PA, 1989), Vol. 144, p. 121.

    Google Scholar 

  43. S.B. Qadri and J.H. Dinan,Appl. Phys. Lett. 47 1066 (1985).

    Article  CAS  Google Scholar 

  44. A. Marbeuf, R. Druilhe, R. Triboulet and G. Patriarche,J. Cryst. Growth 117, 10 (1992).

    Article  CAS  Google Scholar 

  45. E.A. Patten, M.H. Kalisher, G.R. Chapman, J.M. Fulton, C.Y. Huang, P.R. Norton, M. Ray and S. Sen,J. Vac. Sci. Technol. B 9, 1746 (1991).

    Article  CAS  Google Scholar 

  46. H.-J. Kleebe, W.H. Hamilton, W.L. Ahlgren, S.M. Johnson and M. Rühle,Properties of II–VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems, Mater. Res. Soc. Symp. Proc., eds., F.J. Bartoli, H.F. Schaake and J.F. Schetzina (Mater. Res. Soc. Pittsburgh, PA, 1990), Vol. 161, p. 63.

    Google Scholar 

  47. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor and M.E. Boyd,J. Vac. Sci. Technol. B 10, 1499 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S.M., Vigil, J.A., James, J.B. et al. MOCVD grown CdZn Te/GaAs/Si substrates for large-area HgCdTe IRFPAs. J. Electron. Mater. 22, 835–842 (1993). https://doi.org/10.1007/BF02817494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817494

Key words

Navigation