Skip to main content
Log in

Effect of Ca2+ on the detoxification of Cd2+ byScenedesmus obliquus cells at low or high temperature

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Scenedesmus obliquus was incubated with Cd2+ in the presence or absence of calcium at low (10°C) or high (40°C) temperature. The Cd2+ uptake was affected not only by Ca2+ but also by temperature. Growth rate was inhibited by Cd2+ especially at low temperature. In all Ca2+-containing cultures,S. obliquus exhibited higher rates of growth, dry matter and pigment fractions than in those containing Cd2+ alone. Proteins exhibited a similar response. Ca2+ in the presence of Cd2+ was most efficient where protein contents were mostly doubled. On the other hand Ca2+ reduced the solute leakage by the test alga at 10 and 40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Basset R., Issa A.A.: Membrane stabilization and survival of dehydratedChlorella fusca cells induced by calcium.Biologia Plant.36, 389–395 (1994).

    CAS  Google Scholar 

  • Abdel-Basset R., Issa A.A., Adam M.S.: Chlorophyllase activity: effects of heavy metals and calcium.Photosynthetica31, 421–425 (1995).

    CAS  Google Scholar 

  • Adam M.S., Abdel-Basset R.: Effect of lead nitrate and lead acetate on the growth and some metabolic processes ofScenedesmus obliquus.Acta Hydrobiol.32, 93–99 (1990).

    CAS  Google Scholar 

  • Andreev I.M., Kov V.K., Molotkovsky Y.G.: Calmodulin stimulation of Ca2+/nH+ antiport across the vacuolar membrane of sugar beet taproot.J. Plant Physiol.136, 3–7 (1990).

    CAS  Google Scholar 

  • Babich H., Stotzky G.: Effects of cadmium on the biota: influence of environmental factors.Adv. Appl. Microbiol.23, 55 (1978).

    PubMed  CAS  Google Scholar 

  • Babich H., Stotzky G.: Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies.Environ. Res.36, 111 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Cain J.R., Paschal D.C., Hayden C.M.: Toxicity and bioaccumulation of cadmium in the colonial green algaScenedesmus obliquus.Arch. Environ. Contam. Toxicol.9, 9 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Cheung W.Y.: Calmodulin plays a pivotal role in cellular regulation.Science207, 19–27 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Chu S.P.: The influence of mineral composition of the medium on the growth of planktonic algae. I. Methods and cultural media.J. Ecol.30, 284–325 (1942).

    Article  CAS  Google Scholar 

  • Gadd G.M., Griffith A.J.: Microorganisms and heavy metal toxicity.Microb. Ecol.4, 303–317 (1978).

    Article  CAS  Google Scholar 

  • Greger M., Bertell G.: Effects of Ca2+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris).J. Exp. Bot.247, 167–173 (1992).

    Article  Google Scholar 

  • Grill E., Winnacker E.L., Zenk M.H.: Phytochelatins: the principal heavy-metal complexing peptides of higher plants.Science230, 674–676 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Healey F.P.: Interacting effects of light and nutrient limitation on the growth rate ofSynchococcus linearis (Cyanophyceae).J. Phycol.21, 134–146 (1985).

    Article  Google Scholar 

  • Issa A.A., Abdel-Basset R., Adam M.S.: Abolition of heavy metal toxicity onKirchneriella lunaris (Chlorophyta) by calcium.Ann. Bot.75, 189–192 (1995).

    Article  CAS  Google Scholar 

  • Leopold A.C., Musgrave M.E., Williams K.M.: Solute leakage resulting from leaf desiccation.Plant Physiol.68, 1222–1225 (1981).

    PubMed  CAS  Google Scholar 

  • Leopold A.C., Willing R.P.: Evidence for toxicity effects of salt on membranes, pp. 67–91 in R.C. Staples, G.H. Toennissen (Eds):Salinity Tolerance in Plants, Strategies for Crop Improvement. J. Wiley & Sons, New York 1984.

    Google Scholar 

  • Lindberg S., Wingstrand G.: Mechanism for Cd2+ inhibition of (K++Mg2+) ATPase activity and K+ (86Rb+) uptake in roots of sugar beet (Beta vulgaris).Physiol. Plant63, 181–186 (1985).

    Article  CAS  Google Scholar 

  • Marker A.F.H., Crowther C.A., Gunn R.J.M.: Methanol and acetone as solvents for estimating chlorophylla and phaeopigments by spectrophotometry.Arch. Hydrobiol., Beiheft, Ergebnisse der Limnologie14, 52–69 (1980).

    CAS  Google Scholar 

  • Metzner H., Rau H., Senger H.: Untersuchungen von Synchronisierbarkeit einzelner Pigmentmangel-Mutant vonChlorella.Planta65, 186–194 (1965).

    Article  CAS  Google Scholar 

  • Nakamura Y., Tanaka K., Ohta E., Eskata M.: Protective effect of external Ca2+ on elongation and the intracellular concentration of K+ in intact mung bean roots under high NaCl stress.Plant Cell Physiol.31, 815–821 (1990).

    CAS  Google Scholar 

  • Peterson P.J.: Adaptation to toxic metals, pp. 51–69 in,Metals and Micronutrients Uptake and Utilization by Plants (D.A. Robb, W.S. Pierpoint, Eds). Academic Press, London 1983.

    Google Scholar 

  • Poovalah B.W., Leopold A.C.: Deferral of leaf senescence with calcium.Plant Physiol.52, 236–239 (1973).

    Google Scholar 

  • Rai L.C., Raizada M.: Effect of nickel and silver ions on survival, growth, carbon fixation and nitrogenase activity inNostoc muscorum: regulation of toxicity by EDTA and calcium.J. Gen. Appl. Microbiol.31, 329–337 (1985).

    CAS  Google Scholar 

  • Rai L.C., Haur J.P., Kumar H.D.: Phycology and heavy-metal pollution.Biol. Rev.56, 99 (1981).

    Article  CAS  Google Scholar 

  • Raven J.A., Geider R.J.: Temperature and algal growth.New Phytol.110, 441–461 (1988).

    Article  CAS  Google Scholar 

  • Rosko J.J., Rachlin J.W.: The effect of cadmium, copper, mercury, zinc and lead on the cell division, growth, chlorophyll content of the chlorophyteChlorella vulgaris.Bull. Torrey Bot. Club1104, 226 (1977).

    Article  Google Scholar 

  • Sabnis D.D., Gordon M., Galston A.E.: A site with an affinity for heavy metals on the thylakoid membranes of chloroplasts.Plant Physiol.44, 1355–1363 (1969).

    PubMed  CAS  Google Scholar 

  • Sorentino C. The effects of heavy metals on phytoplankton: a review.Phykos,18, 149 (1979).

    CAS  Google Scholar 

  • Sorokin C., Krauss R.W.: Effects of temperature and illuminance onChlorella growth uncoupled from cell division.Plant Physiol.37, 37 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Tomsett A.B., Thurman D.A.: Molecular biology of metal tolerances of plants.Plant Cell Environ.11, 383–394 (1988).

    Article  CAS  Google Scholar 

  • Trevors J.T., Stration G.W., Gadd G.M.: Cadmium transport, resistance and toxicity in bacteria, algae and fungi.Can. J. Microbiol.32, 247 (1986).

    Google Scholar 

  • Trivedi S., Erdel L.: Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status.Physiol. Plant84, 94–100 (1992).

    Article  CAS  Google Scholar 

  • Truhaut R., Ferard J.F., Jouany J.M.: Cadmium, IC50 determination onChlorella vulgaris involving different parameters.Ecotoxicol. Environ. Saf.4, 215 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Vymazal J.: Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: a review.Toxic. Assess.2, 387 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issa, A.A., Adam, M.S. & Abdel-Basset, R. Effect of Ca2+ on the detoxification of Cd2+ byScenedesmus obliquus cells at low or high temperature. Folia Microbiol 43, 645–648 (1998). https://doi.org/10.1007/BF02816383

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816383

Keywords

Navigation