Skip to main content
Log in

Effect of boron and calcium on growth and nitrogen fixation of the blue-green algaCalothrix parietina

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Effects of boron and calcium on the blue-green algaCalothrix parietina were determined. There was a significant decrease in growth, chlorophylla, saccharide and total nitrogen fixed under Ca2+ and boron deficiency. The addition of boron at different concentrations to Ca2+-deficient cultures led to partial recovery of these parameters. Calcium addition to B-deficient cells led to a partial recovery of growth, saccharide, chlorophylla and total nitrogen fixed. At high concentrations of calcium these parameters were significantly inhibited. The data also revealed that the different responses to B concentrations were due to the Ca2+ level in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolanos L., Mateo P., Bonilla I.: Calcium-mediated recovery of boron deficientAnabœna sp. pcc. 7119 grown under nitrogen fixing conditions.J. Plant Physiol. 142, 513–517 (1993).

    CAS  Google Scholar 

  • Bonilla I., Bolanos L., Mateo P.: Interaction of boron and calcium in the cyanobacteriaAnabœna andSynechococcus.Physiol. Plant. 94, 1–36 (1995).

    Article  Google Scholar 

  • Bonilla I., Garcia-Gonzalez M., Mateo P.: Boron requirement in cyanobacteria. Its possible role in the early evolution of photosynthetic organisms.Plant Physiol. 94, 1554–1560 (1990).

    PubMed  CAS  Google Scholar 

  • Chaney A.L., Marbach E.P.: Modified reagents for determination of urea and ammonia.J. Clin. Chem. 8, 180–182 (1962).

    Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Repers P.A., Smith F.: Colorimetric method for determination of sugars and related substances.Analyt. Chem. 18, 350–356 (1956).

    Article  Google Scholar 

  • El-Nawawy A.S., Lotfi M., Fahmy M.: Studies on the ability of some blue-green algae to fix atmospheric nitrogen and their effect on growth and yield of paddy.Agric. Res. Rev. 27, 208–320 (1958).

    Google Scholar 

  • Fawcett J.K., Scott J.E.: A rapid and precise method for the determination of urea.J. Clin. Pathol. 13, 156–159 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E., Sanchez E., Bonilla I., Mateo P., Ortega P.: Effect of boron on the growth and cell composition ofChlorella pyrenoidosa.Phyton 44, 125–131 (1984).

    CAS  Google Scholar 

  • Goldbach H.E., Blaser-Grill J., Lindemann N., Porzelt M., Horrmann C., Lupp B., Gessner B.: Influence of boron on net proton release and its relation to other metabolic processes, pp. 195–220 inCurrent Topics in Plant Biochemistry and Physiology, Vol. 10 (D.D. Randall, D.G. Blevins, D. Miles, Eds). Missouri-Columbia University Press, Columbia (MO) 1991.

    Google Scholar 

  • Lewin J.C.: Boron as a growth requirement for diatoms.J. Phycol. 2, 160–163 (1966).

    Article  CAS  Google Scholar 

  • Loomis W.D., Durst R.W.: Chemistry and biology of boron.Biofactors 3, 229–239 (1992).

    PubMed  CAS  Google Scholar 

  • Metzner H., Rau H., Senger H.: Untersuchungen zur Synchronisierbarkeit einzelner pigmenten angel Mutanten vonChlorella.Planta 65, 186–194 (1965).

    Article  CAS  Google Scholar 

  • Marme D.: Calcium transport and function, pp. 599–625 inInorganic Plant Nutrition. Encyclopedia of Plant Physiology. New Series, Vol. 15B (A. Lauchli, R.L. Bieleski, Eds). Springer-Verlag, Berlin 1983.

    Google Scholar 

  • Mateo P., Bonilla I., Fernandez-Valiente E., Sanchez-Maeso E.: Essentiality of boron for dinitrogen inAnabœna sp. pcc 7119.Plant Physiol. 81, 430–433 (1986).

    PubMed  CAS  Google Scholar 

  • Nielson F.H.: The saga of boron in foods from a benished food preservative to a beneficial nutrient for humans, pp. 274–286 inCurrent Topics Plant Biochemistry and Physiology, Vol. 10 (D.D. Randall, D.G. Blevins, D. Miles, Eds). Missouri-Columbia University Press, Columbia (MO) 1991.

    Google Scholar 

  • Onek L.A., Smith R.J.: Calmodulin and calcium mediated regulation in prokaryotes.J. Gen. Microbiol. 138, 1039–1049 (1992).

    PubMed  CAS  Google Scholar 

  • Pandey P.K., Singh B.B., Mishra R., Bisen P.S.: Ca super (Ca2+) uptake and its regulation in the cyanobacteriumNostoc MAC.Curr. Microbiol. 32, 332–335 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Smyth D.A., Dugger W.M.: Cellular changes during boron deficient culture of the diatomCylindrotheca fusiformis.Plant Physiol. 51, 111–117 (1981).

    Article  CAS  Google Scholar 

  • Snedecor G.W., Cochran G.C.:Statistical Methods, 7th ed. Iowa State University Press, Iowa (USA) 1980.

    Google Scholar 

  • Teasdale R.D., Dawson P.A., Woolhouse H.W.: Mineral nutrient requirement of loblolly pine (Pinus tœda). Cell suspension culture.Plant Physiol. 82, 942–945 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Teasdale R.D., Richards D.K.: Boron deficiency in cultured pine cells. Quantitative studies of the interaction with Ca and Mg.Plant Physiol. 93, 1071–1077 (1990).

    PubMed  CAS  Google Scholar 

  • Yamauchi T., Hara T., Sonoda Y.: Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall.Plant Physiol. 27, 729–732 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Zahraa, F., Zaki, T. Effect of boron and calcium on growth and nitrogen fixation of the blue-green algaCalothrix parietina . Folia Microbiol 44, 201–204 (1999). https://doi.org/10.1007/BF02816243

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816243

Keywords

Navigation