Skip to main content
Log in

Use of mutatedPDR3 gene as a dominant selectable marker in transformation of prototrophic yeast strains

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

For successful transformation of prototrophic industrial yeast strains dominant selectable markers are necessary. In the present study we show the applicability of a selection system based on the phenotype of multidrug resistance. The mutantpdr 3–9 allele on centromeric or episomal vector, encoding a more efficient transcriptional activator with Y276H amino acid substitution, was used as a dominant selectable marker for selection of transformants. Thepdr3–9 allele conferred resistance of transformed cells to cycloheximide, chloramphenicol, mucidin and oligomycin both in the absence and in the presence of a chromosomal copy of thePDR3 gene. Both multicopy YEp352/pdr3–9 and centromeric pFL38/pdr3–9 vectors bearing the mutantpdr3–9 allele have proved to be a valuable tool for a direct selection of transformants of industrial strains ofSaccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K.:Current Protocols in Molecular Biology. John Wiley and Sons, New York 1988.

    Google Scholar 

  • Bakalinsky A.T., Snow R.: The chromosomal constitution of wine strains ofSaccharomyces cerevisiae.Yeast 6, 367–382 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Balzi E., Goffeau A.: Multiple or pleiotropic drug resistance in yeast.Biochim. Biophys. Acta 1073, 241–252 (1991).

    PubMed  CAS  Google Scholar 

  • Balzi E., Goffeau A.: Genetics and biochemistry of yeast multidrug resistance.Biochim. Biophys. Acta 1187, 152–162 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Balzi E., Goffeau A.: Yeast multidrug resistance: thePDR network.J. Bioenerg. Biomembr.,27, 71–76 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bissinger P.H., Kuchler K.: Molecular cloning and expression of theSaccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance.J. Biol. Chem. 269, 4180–186 (1994).

    PubMed  CAS  Google Scholar 

  • Bullock W.O., Fernandez J.M., Short J.M.: A high efficiency plasmid, transformingrecA Escherichia coli strain with β-galactosidase selection.Biotechniques 5, 376–380 (1987).

    CAS  Google Scholar 

  • Decottignies A., Lambert L., Catty P., Degand H., Epping E.A., Moye-Rowley W.S., Balzi E., Goffeau A.: Identification and characterization ofSNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane.J. Biol. Chem. 270, 18150–18157 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Delaveau T., Delahodde A., Carvajal E., Šubík J., Jaco C.:PDR3, a new yeast regulatory gene, is homologous toPDRI and controls the multidrug resistance phenomenon.Mol. Gen. Genet. 244 501–511 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K., Watanabe M., Asano K., Ouchi K., Takasawa S.: A mutatedARO4 gene for feedback-resistant DAHP synthase which causes bothp-fluoro-DL-phenylalanine resistance and β-phenethylalcohol overproduction inS. cerevisiae.Curr. Genet. 20, 453–456 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Hammond J.R.M.: Genetically-modified brewing yeasts for the 21st century.Yeast 11, 1613–1627 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Henderson R.C.A., Cox B.S., Tubb R.: The transformation of brewing yeast with a plasmid containing the gene for copper resistance.Curr. Genet. 9, 133–138 (1985).

    Article  CAS  Google Scholar 

  • Inoue H., Nojima H., Okayama H.: High efficiency transformation ofEscherichia coli with plasmidsGene 96, 23–28 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Katzmann D., Burnett P., Golin J., Mahe Y., Moye-Rowley W.S.: Transcriptional control of the yeastPDR5 gene by thePDR3 gene product.Mol. Cell. Biol. 14, 4653–4661 (1994).

    PubMed  CAS  Google Scholar 

  • Katzmann D., Hallstrom T.C., Voet M., Wysock W., Golin J., Volekaert G., Moye-Rowley W.S.: Expression of an ATP-binding cassette transporter gene (YOR1) is required for oligomycin resistance inSaccharomyces cerevisiae.Mol. Cell. Biol. 15, 6875–6883 (1995).

    PubMed  CAS  Google Scholar 

  • Kean L.S., Grant A.M., Angeletti C., Mahe Z., Kuchler K., Fuller R.S., Nichols J.W.: Plasma membrane, translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators,PDR1 andPDR3.J. Cell. Biol. 138, 255–270 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lacková D., Šubík J.: Dominant selectable vector markers in transformation of the yeastSaccharomyces cerevisiae. Biol. Listy, in press (1998).

  • Mahe Y., Parle M.C., Dermott A., Nourani A., Delahodde A., Lamprecht A., Kuchler K.: The ATP-binding cassette multidrug transporter Snq2 ofSaccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3.Mol. Microbiol. 20, 109–117 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A., Miyajima I., Arai K., Arai N.: Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker inSaccharomyces cerevisiae.Mol. Cell. Biol. 4, 407–414 (1984).

    PubMed  CAS  Google Scholar 

  • Nourani A., Papajova D., Delahodde A., Jacq C., Šubík J.: Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain.Mol. Gen. Genet 256, 397–405 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Obernauerová M., Šubík J.: Regulation of α-glucosidase and β-d-fructofuranosidase in industrial strains of baker's yeast and the preparation of recombinants over-producing these enzymes.Bulletin PV (Bratislava) 26, 235–250 (1987).

    Google Scholar 

  • Pozo L., Abarca D., Claros M.G., Jimenez A.: Cycloheximide resistance as a yeast cloning marker.Curr. Genet. 19, 353–358 (1991).

    Article  PubMed  Google Scholar 

  • Rose M.D., Winston F., Hieter P.:Methods in Yeast Genetics. A Laboratory Course Manual., Cold Spring Harbor, New York 1990

  • Salai K., Yamamoto M.: Transformation of yeast,Saccharomyces carlsbergensis, using an antibiotic resistance marker.Agric. Biol. Chem. 50, 1177–1182 (1986).

    Google Scholar 

  • Sambrook J., Fritch E.F., Maniatis T.:Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1989.

    Google Scholar 

  • Sherman F., Fink G.R., Lawrence C.W.:Methods in Yeast Genetics, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1983.

    Google Scholar 

  • Shimura K., Fukuda K., Ouchi K.: Genetic transformation of industrial yeasts using an amino acid analog resistance gene as directly selectable marker.Enzyme Microb. Technol. 15, 874–876 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Wehner E.P., Brendel M.: Vector YFRp1 allows transformant selection inSaccharomyces cerevisiae via resistance to formaldehyde.Yeast 9, 783–785 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šubík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacková, D., Šubík, J. Use of mutatedPDR3 gene as a dominant selectable marker in transformation of prototrophic yeast strains. Folia Microbiol 44, 171–176 (1999). https://doi.org/10.1007/BF02816237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816237

Keywords

Navigation