Skip to main content
Log in

Biochemistry of Parkinson's disease with special reference to the dopaminergic systems

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The cardinal neurochemical abnormality in Parkinson's disease is the decreased dopamine content in the striatum, resulting from the loss of dopaminergic neurons in the mesencephalon. Precise analysis of the dopaminergic neurons in the midbrain demonstrates, however, that this cell loss is not uniform. Some dopaminergic cell groups are more vulnerable than others. The degree of cell loss is severe in the substantia nigra pars compacta, intermediate in the ventral tegmental area and cell group A8, but nonexistent in the central gray substance. This heterogeneity provides a good paradigm for analyzing the factors implicated in this differential vulnerability. So far, the neurons that degenerate have been shown to contain neuromelanin, high amounts of iron, and no calbinding28K, and to be poorly protected against oxidative stress. By contrast, the neurons that survive in Parkinson's disease are free of neuromelanin, calbindinD28-positive, contain low amounts of iron, and are better protected against oxidative stress. The analysis of the pattern of cell loss in Parkinson's disease may thus bring new clues as to the mechanism of nerve cell death in Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch E. C., Graybiel A. M., and Agid Y. (1988)Nature 334, 345–348.

    Article  PubMed  CAS  Google Scholar 

  2. Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., Jenner P., and Marsden C. D. (1989)J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  3. Marsden C. D. (1983)J. Neural. Trans. Suppl. 19, 121–141.

    CAS  Google Scholar 

  4. Mann D. M. A., and Yates P. O. (1983)Mech. Ageing Dev. 21, 193–203.

    Article  PubMed  CAS  Google Scholar 

  5. Kastner A., Hirsch E. C., Lejeune O., Javoy-Agid F., and Agid Y. (1992)J. Neurochem. 59, 1080–1089.

    Article  PubMed  CAS  Google Scholar 

  6. Ceballos I., Lafon M., Javoy-Agid F., Hirsch E., Nicole A., Sinet P. M., and Agid Y. (1990)Lancet 335i, 1035, 1036.

    Article  Google Scholar 

  7. Zhang P., Anglade P., Hirsch E. C., Javoy-Agid F., and Agid Y. (1993)Neuroscience, in press.

  8. Martilla R. J., Lorentz H., and Rinne U. K. (1988)J. Neurol. Sci. 86, 321–331.

    Article  Google Scholar 

  9. Saggu H., Cooksey J., Dexter D., Wells F. R., Lees A., Jenner P., and Marsden C. D. (1989)J. Neurochem. 53, 692–697.

    Article  PubMed  CAS  Google Scholar 

  10. Przedborski S., Kostic V., Jacson-Lewis V., Carlson E., Epstein C. J., and Cadet J. L. (1992)J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  11. Damier P., Hirsch E., Javoy-Agid F., Zhang P. and Agid Y. (1993)Neuroscience 52, 1–6.

    Article  PubMed  CAS  Google Scholar 

  12. Earle K. M. (1968)J. Neuropathol. Exp. Neurol. 27, 1–14.

    Article  PubMed  CAS  Google Scholar 

  13. Dexter D. T., Wells F. R., Lees A. J., Agid F., Agid Y., Jenner P., and Marsden C. D. (1989)J. Neurochem. 52, 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  14. Sofic E., Paulus W., Jellinger K., Riederer P., and Youdim M. B. H. (1991)J. Neurochem. 56, 978–982.

    Article  PubMed  CAS  Google Scholar 

  15. Hirsch E. C., Brandel J. P., Galle P., Javoy-Agid F., and Agid Y. (1991)J. Neurochem. 56, 446–451.

    Article  PubMed  CAS  Google Scholar 

  16. Perl D. P., Good P. F., and Olanow C. W. (1993)Mt. Sinai J. Med. in press.

  17. Jellinger K., Paulus W., and Grundke-Iqbal I. (1990)J. Neural Transm. 2, 327–340.

    Article  CAS  Google Scholar 

  18. Jellinger K., Kienzl E., and Rumpelmayer G. (1992)J. Neurochem. 59, 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  19. Youdim M. B. H., Ben-Shachar D., and Riederer P. (1990)J. Neural Trans. 32(Suppl.), 239–248.

    CAS  Google Scholar 

  20. Snider W. D. and Johnson E. M. (1989)Ann. Neurol. 26, 489–506.

    Article  PubMed  CAS  Google Scholar 

  21. Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lindsay R. M. (1991)Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  22. Villares J., Faucheux B., Strada O., Hirsch E. C., Agid Y., and Javoy-Agid F. (1993)Brain Res. 19, 72–76.

    Article  Google Scholar 

  23. Farber J. L., Chien K. R., and Mittnacht S. Jr. (1991)Am. J. Pathol. 102, 271–281.

    Google Scholar 

  24. Rothman S. M., and Olney J. W. (1987)TINS 10, 299–302.

    CAS  Google Scholar 

  25. Mayer M. L. and Westbrook G. L. (1987)TINS 10, 59–61.

    CAS  Google Scholar 

  26. Mattson M. P., Rychlik B., Chu C., and Christakos S. (1991)Neuron 6, 41–51.

    Article  PubMed  CAS  Google Scholar 

  27. Hirsch E. C., Mouatt A., Thomasset M., Javoy-Agid F., Agid Y., and Graybiel A. M. (1992)Neurodegeneration 1, 83–93.

    Google Scholar 

  28. Lavoie B., and Parent A. (1991)Soc. Neurosci. Abstr. 17, 143.

    Google Scholar 

  29. Manaye K. F., Sonsalla P. K., Brooks B. A., and German D. C. (1991)Soc. Neurosci. Abstr. 17, 1275.

    Google Scholar 

  30. Bean A. J., Elde R., Cao Y., Oellig C., Tamminga C., Goldstein M., Pettersson R. F., and Hokfelt T. (1991)Proc. Natl. Acad. Sci. USA 88, 10,237–10,241.

    Article  CAS  Google Scholar 

  31. Casper D., Mytilineou C., and Blum M. (1991)J. Neurosci. Res. 30, 372–381.

    Article  PubMed  CAS  Google Scholar 

  32. Claude P., Parada I. M., Gordon K. A., D'Amore P. A., and Wagner J. A. (1988)Neuron 1, 783–790.

    Article  PubMed  CAS  Google Scholar 

  33. Date I., Notter M. F. D., Felten S. Y., and Felten D. L. (1990)Brain Res. 526, 156–160.

    Article  PubMed  CAS  Google Scholar 

  34. Fallon J. H., Serrogy K. B., Loughlin S. E., Morrison R. S., Bradshaw R. A., Knauer D. J., and Cunningham D. D. (1984)Science 224, 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrari G., Minozzi M.-C., and Toffano G. (1989)Dev. Biol. 133, 140–147.

    Article  PubMed  CAS  Google Scholar 

  36. Goodman R., Slater E., and Herschman H. R. (1980)J. Cell Biol. 84, 495–500.

    Article  PubMed  CAS  Google Scholar 

  37. Hadjiconstantinou M., Fitkin J. G., Dali A., and Neff N. H. (1991)J. Neurochem. 57, 479–482.

    Article  PubMed  CAS  Google Scholar 

  38. Hofer M. M., and Barde Y. A. (1988)Nature 331, 261–265.

    Article  PubMed  CAS  Google Scholar 

  39. Knüssel B., Michel P. P., Schwaber J. S., and Hefti F. (1990)J. Neurosci. 10, 558–570.

    Google Scholar 

  40. Lewis E. J., and Chikaraishi D. M. (1987)Mol. Cell Biol. 7, 3332–3336.

    PubMed  CAS  Google Scholar 

  41. Loy R., Heyer D., and DiStefano P. (1988)Soc. Neurosci. Abstr. 14, 302.

    Google Scholar 

  42. Matsuda S., Saito H., and Nishiyama N. (1990)Brain Res. 529, 310–316.

    Article  Google Scholar 

  43. Otto D., and Unsicker K. (1990)J. Neurosci. 10, 1912–1921.

    PubMed  CAS  Google Scholar 

  44. Park T. M., and Mytilineou C. (1991)Brain Res. 599, 83–97.

    Article  Google Scholar 

  45. Rydel R. E., and Greene L. A. (1987)J. Neurosci. 7, 3639–3653.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, E.C. Biochemistry of Parkinson's disease with special reference to the dopaminergic systems. Mol Neurobiol 9, 135–142 (1994). https://doi.org/10.1007/BF02816113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816113

Index Entries

Navigation