Skip to main content
Log in

Freed-amino acids in human cerebrospinal fluid of alzheimer disease, multiple sclerosis, and healthy control subjects

  • Published:
Molecular and Chemical Neuropathology

Abstract

This is the first report of the presence of freeD-amino acids in lumbar and ventricular human cerebrospinal fluid (CSF) of individuals with Alzheimer disease (AD) compared with CSF of normal control subjects and with individuals affected by multiple sclerosis, as an unrelated neurologic disorder. Freed-amino acids are present at significantly higher levels in AD CSF than normal CSF, whereas in the CSF of patients affected by multiple sclerosis,d-amino acids occurs at the same level as in the normal controls. The totald-amino acid content in ventricular CSF was 1.48 times higher in the AD than controls (26.4 vs 17.9 nmol/mL,p=0.025). The totald-amino acid content was 1.43 times higher in AD lumbar CSF than controls (1.89 vs. 1.32 nmol/mL,p=0.001).d-Aspartate in particular was 2.74 times higher in AD ventricular CSF compared to normal ventricular CSF (3.34 vs 1.22 nmol/mL,p=0.029). In lumbar CSF,d-aspartate was 1.5 times higher in AD than controls (0.054 vs 0.036 nmol/mL,p=0.041). Previously we reported thatd-amino acids are elevated in AD brain proteins associated with neurofibrillary tangles compared to normal brain proteins (D'Aniello et al., 1992c; Fisher et al., 1992a,b). Thus, thed-amino acids present in CSF may originate from degradation of brain proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aswad D. W. (1984) Determination ofd- andl-aspartate in amino, acid mixtures by high performance liquid chromatography after derivatization with a chiral adduct ofo-phthaldialdehyde.Anal. Biochem. 137, 405–407.

    Article  PubMed  CAS  Google Scholar 

  • Barber J. R. and Clarke S. (1983) Membrane protein carboxyl methylation increases with human erythrocyte age.J. Biol. Chem. 258, 1189–1196.

    PubMed  CAS  Google Scholar 

  • Coy D. H., Kastin A. J., Schally A. V., Morin O., Caron N. G., Labrie F., Walker J. M., Fertel R., Berntson G. G., and Sandman C. A. (1976) Synthesis and opiate activities of stereoisomers and otherd-amino acid analogs of methionine-enkephalin.Biochem. Biophys. Res. Commun. 73, 632–637.

    Article  PubMed  CAS  Google Scholar 

  • D'Aniello A. and Giuditta A. (1977) Identification ofd-aspartic acid in the brain ofOctopus vulgaris L. J. Neurochem. 29, 1053–1057.

    Article  PubMed  Google Scholar 

  • D'Aniello A. and Giuditta A. (1978) Presence ofd-aspartate in squid axoplasm and in other regions of the cephalopod nervous system.J. Neurochem. 31, 1107–1108.

    Article  PubMed  Google Scholar 

  • D'Aniello A. and Giuditta A. (1980) Presence ofd-alanine in crustacean muscle and hepatopancreas.Comp. Biochem. Physiol. 66B, 319–322.

    Google Scholar 

  • D'Aniello A., D'Onofrio G., and Pischetola M. (1987) Determination ofd-aspartate content in lenses of human cataracts using a new method of hydrolysis to minimize racemization of amino acids.Ital. J. Biochem. 36, 322A-324A.

    Google Scholar 

  • D'Aniello A., Nardi G., Cipollaro M., Pischetola M., and Padula L. (1990) Occurrenced-alanine in the eggs and the developing embryo of the sea urchinParacentrotus lividus.Comp. Biochem. Physiol. 97B, 291–294.

    Google Scholar 

  • D'Aniello A., Nardi G., Vetere A., and Ferguson G. P. (1992a) Occurrence of freed-aspartic acid in the circumsoesophageal ganglia ofAplysia fasciata.Life Sci. 52, 733–736.

    Article  Google Scholar 

  • D'Aniello A., Vetere A., and Padula L. (1992b) Occurrence of freed-amino acids in the gametes, embryos, larvae and adult of the sea squirtCiona intestinalis.Comp. Biochem. Physiol. 102B, 795–797.

    Google Scholar 

  • D'Aniello A., Vetere A., Fisher G. H., Cusano G., Chavez M., and Petrucelli L. (1992c) Presence ofd-Alanine in proteins of normal and Alzheimer human brain.Brain Res. 592, 44–48.

    Article  PubMed  Google Scholar 

  • D'Aniello A., Vetere A., and Petrucelli L. (1993) Further study on the specificity ofd-amino acid oxidase andd-aspartate oxidase and time course for complete oxidation ofd-amino acids.Comp. Biochem. Physiol. 105B, 731–734.

    Google Scholar 

  • D'Aniello A., Petrucelli L., Gardner C., and Fisher G. (1993) Improved method for hydrolyzing proteins and peptides without inducing racemization and for determining their trued-amino acid content.Anal. Biochem. 213, 290–295.

    Article  PubMed  Google Scholar 

  • Dunlo D. S., Neidle A., McHale D., Dunlop D. M., and Lajtha A. (1986) The presence of freed-aspartic acid in rodents and man.Biochem. Biophys. Res. Commun. 142, 27–32.

    Article  Google Scholar 

  • Felbeck H. and Wiley S. (1987) Freed-amino acids in the tissue of marine bivalves.Biol. Bull. 173, 252–259.

    Article  Google Scholar 

  • Ferraro T. N. and Hare T. A. (1984) Triple-column ion-exchange physiological amino acid analysis with fluorescent detection; baseline characterization of human cerebrospinal fluid.Anal. Biochem. 143, 82–94.

    Article  PubMed  CAS  Google Scholar 

  • Fisher G. H., D'Aniello A., Vetere A., Padula L., Cusano G. P. and Man E. H. (1991) Freed-aspartate andd-alanine in normal and Alzheimer brain.Brain Res. Bull. 26, 983–985.

    Article  PubMed  CAS  Google Scholar 

  • Fisher G. H., Payan I. L., Chou S. J., Man E. H., Cerwinski S., Martin T., Emory C., and Frey W. H. (1992a) Racemizedd-aspartate in Alzheimer neurofibrillary tangles.Brain Res. Bull. 28, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Fisher G. H., D'Aniello A., Vetere A., Cusano G., Chávez M. and Petrucelli L. (1992b) Quantification ofd-aspartic acid in normal and Alzheimer brains.Neurosci. Lett. 143, 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Godel H., Graser T., Földi P., Pfaender P., and Fürst P. (1984) Measurement of free amino acids in human biological fluids by high-performance liquid chromatography.J. Chromatogr. 297, 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A., Nishikawa T., Oka T. and Takahashi K. (1993a) Endogenousd-serine in rat brain:N-methyl-d-aspartate receptor-related distribution and aging.J. Neurochem. 60, 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A., Kumashiro S., Nishikawa T., Oka T., Takahashi K., Mito T., Takashima S., Doi N., Mizutani Y., Yamazaki T., Kaneko T. and Ootomo E. (1993b) Embryonic development and postnatal changes in freed-aspartate andd-serine in the human prefrontal cortex.J. Neurochem. 61, 348–351.

    Article  PubMed  CAS  Google Scholar 

  • Helfman P. M. and Bada J. L. (1976) Aspartic acid racemization in dentine as a measure of aging.Nature 262, 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Kamatani Y., Minakata H., Kenny P. T. M., Iwashita T., Watanabe K., Funase K., Sun X. P., Yongisiri A., Kim K. H., Novales-Li P., Novales E. T., Lanapi C. G. Takeuchi H., and Nomoto K. (1989) Achatin-I, an endogenous neuroexcitatory tetrapeptide fromAchatina fulica ferussac containing ad-amino acid residue.Biochem. Biophys. Res. Commun. 160, 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian Z. S. (1985) Diagnosis of Alzheimer's disease.Arch. Neurol. 42, 1097–1105.

    PubMed  CAS  Google Scholar 

  • Man E. H., Sandhouse E. H., Burg J., and Fisher G. H. (1983) Accumulation ofd-aspartic acid with age in human brain.Science 222, 1407, 1408.

    Article  Google Scholar 

  • Man E. H., Fisher G. H., Payan I. L., Cadilla-Perezrios R., Garcia N. M., Chemburkar R., Arends G. and Frey W. H., II. (1987)d-Aspartate in human brain.J. Neurochem. 48, 510–515.

    Article  PubMed  CAS  Google Scholar 

  • Masters P. M., Bada J. L., and Zigler J. S. (1977) Aspartic acid racemization in human lens during aging and in cataract formation.Nature 268, 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Mirra S. S., Heyman A., McKeel D., Sumi S. M., Crain B. J., Brownlee L. M., Vogel F. S., Hughes J. P., van Belle G., Berg L., and participating CERAD neuropathologists (1991) The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) II. Standardization of the neuropathologic assessment of Alzheimer's disease.Neurology 41, 479–486.

    PubMed  CAS  Google Scholar 

  • Montecucchi P. C., De Castgiglione R., Piani S. and Erspamer V. (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from skin ofPhyllomedusa sauvage.Int. J. Pept. Prot. Res. 17, 275–283.

    Article  CAS  Google Scholar 

  • Nagata Y., Akino T., Ohno K., Kataoka Y., Ueda T., Sakuri T., Shiroshita K., and Yasuda T. (1987) Freed-amino acids in human plasma in relation to senescence and renal diseases.Clin. Sci. 73, 330–332.

    Google Scholar 

  • Nagata Y., Akino T. and Ohno K. (1989) Presence of freed-amino acids in mouse tissues.Experientia 45, 330–32.

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y., Yamamoto K., Shimojo T., Konno R., Yasumura Y., and Akino T. (1992) The presence of freed-alanine,d-proline, andd-serine in mice.Biochim. Biophys. Acta 1115, 208–211.

    PubMed  CAS  Google Scholar 

  • Neidle A. and Dunlop D. S. (1990) Developmental changes in freed-aspartic acid in the chicken embryo and in the neonatal rat.Life Sci. 46, 1517–1522.

    Article  PubMed  CAS  Google Scholar 

  • Ohto N., Kuhota I., Takao T., Shimomishi Y., Kamatamo Y., Minaketa M., Nomota K., Muneko Y., and Kobuyashi M. (1989) Fulicine, a novel neuropeptide containing ad-amino acid residue isolated from the ganglia ofAchatine fulica.Biochem. Biophys. Res. Commun. 178, 486–493.

    Article  Google Scholar 

  • Perry T. L., Hansen S., and Kennedy J. (1975) CSF amino acid and plasma-CSF amino acid ratios in adults.J. Neurochem. 24, 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Pomara N., Singh R., Deptula D., Chou J. C.-Y., Schwartz M. B., and LeWitt P. A. (1992) Glutamate and other CSF amino acids in Alzheimer's disease.Am. J. Psych. 149, 251–254.

    CAS  Google Scholar 

  • Preston R. L. (1987) Occurrence ofd-amino acids in higher organisms: A survey of the distribution ofd-amino acids in marine invertebrates.Comp. Biochem. Physiol. 87B, 55–62.

    CAS  Google Scholar 

  • Sato M., Yamaguchi T., Kanno N., and Saro Y. (1989) Confirmation ofd-aspartic acid in the novel dipeptide β-aspartylglycine isolated from tissue extract ofAplysia furodai.Biochem. J. 263, 617–620.

    PubMed  CAS  Google Scholar 

  • Spink D. C., Swann J. W., Snead O. C., Wainewski R. A., and Martin D. L. (1986) Analysis of aspartate and glutamate in human cerebrospinal fluid by high performance liquid chromatography with automated precolumn derivatization.Anal. Biochem. 158, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T., Asano S., Furiya YH., Shirasawa T., Noriaki E., and Mori H. (1994) Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid β protein analogues.J. Biol. Chem. 269, 10205–10208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, G.H., Petrucelli, L., Gardner, C. et al. Freed-amino acids in human cerebrospinal fluid of alzheimer disease, multiple sclerosis, and healthy control subjects. Molecular and Chemical Neuropathology 23, 115–124 (1994). https://doi.org/10.1007/BF02815405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815405

Index Entries

Navigation