Skip to main content
Log in

Phorbol ester-induced neuritic alterations in the rat neocortex

Structural and immunocytochemical studies

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

In order to explore the effect of aberrant sprouting in the CNS, phorbol 12-myristate 13-acetate (PMA) was administered into the neocortex of adult rats. PMA is a growth-promoting agent that activates and eventually downregulates protein kinase C (PKC), and induces in the rat the expression of several genes, including amyloid precursor protein (APP). We found that multiple injections of 100 nM PMA into the rat neocortex promote, in the first week postinjection, a widespread vacuolization of the neuropil with a subsequent disruption of the synapses in the injection site, followed, at d 15, by the formation of abnormally distended clusters of neurites that resembled aberrant, sprouting axons. At d 30, fewer aberrant sprouts were observed, and many degenerating neurites were found. At the ultrastructural level, the PMA-induced abnormal neurites at d 7–15 resembled growth cones, whereas the dystrophic neurites at d 30 contained abundant dense and laminated bodies. Immunohistochemical analysis indicated that the abnormal neurites in the areas of denervation and PMA administration were positive with antisynaptophysin and antigrowth-associated protein 43 (GAP-43), with an increased APP immunoreactivity surrounding them. APP immunoreactivity around the injection site was mostly associated with pyramidal neurons and glial cells. Control experiments, where saline alone or 4α-phorbol 12, 13-didecanoate (PDD, an inactive phorbol derivative) was injected, failed to show aberrant sprouting neurites. Further immunohistochemical analysis showed that the PMA-treated animals presented increased amyloidΒ immunoreactivity in the pyramidal cells at the site of injection, when compared with control injections. These findings suggest that aberrant sprouting induced by overstimulation could be followed by neurodegeneration. Alternatively, PKC downregulation could directly induce the neurodegeneration, with a secondary sprouting response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez J., Moreno R. D., Llanos O., Inestrosa N. C., Brandan E., Colby T., and Esch F. S. (1992) Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases.Neurosci. Lett. 144, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Araki W., Kitaguchi N., Tokushima Y., Ishii K., Aratake H., Shimohama S., Nakamura S., and Kimura J. (1991) Trophic effect of beta amyloid precursor protein on cerebral cortical neurons in culture.Biochem. Biophys. Res. Commun. 181, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J., Bronner C., Kligman D., and Cole R. D. (1989) Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein.J. Biol. Chem. 264, 1824–1828.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I. and Routtenberg A. (1987) A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity.TINS 10, 527–532.

    CAS  Google Scholar 

  • Breen K. C., Bruce M., and Anderton B. H. (1991) Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion.J. Neurosci. Res. 28, 90–100.

    Article  PubMed  CAS  Google Scholar 

  • Castagna M., Takai Y., Kaibuchi K., Kikkawa U., and Nishizuka Y. (1982) Direct activation of calcium-activated phospholypid dependent protein kinase by tumor-promoting phorbol esters.J. Biol. Chem. 257, 7847–7851.

    PubMed  CAS  Google Scholar 

  • Cole G., Dobkins K. R., Hansen L. A., Terry R. D., and Saitoh T. (1988) Decreased levels of protein kinase C in Alzheimer brain.Brain Res. 452, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W., Cummings B. J., and Whitson J. S. (1991) The role of misdirect plasticity in plaque biogenesis and Alzheimer’s disease pathology, inGrowth Factors and Alzheimer’s Disease (Hefti F., Brachet P., Will B., and Christen Y., eds.), pp. 222–233, Springer-Verlag, New York.

    Google Scholar 

  • Diamond L., O’Brien T. G., and Baird W. M. (1980) Tumor promoters and the mechanism of tumor promotion.Adv. Cancer Res. 32, 1–74.

    Article  PubMed  CAS  Google Scholar 

  • Favaron M., Maner H., Siman R., Bertolino M., Szekely A. M., DeErausquin G. Guidotti A., and Costa E. (1990) Down regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate-induced neuronal death.Proc. Natl. Acad. Sci. USA 87, 1983–1987.

    Article  PubMed  CAS  Google Scholar 

  • Gabuzda D. H., Busciglio J., and Yankner B. A. (1991) The familial Alzheimer’s disease mutation does not produce gross alterations in APP synthesis or processing.Soc. Neurosci. Abstr. 17, 1104.

    Google Scholar 

  • Gispen W. H., Leunissen J. L. M., Oestreicher A. B., Verkleij A. J., and Swiers H. (1985) Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism.Brain Res. 328, 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Godson C., Weiss B. A., and Insel P. A. (1990) Differential activation of protein kinase C is associated with arachidonate release in MDCK cells.J. Biol. Chem. 265, 8369–8372.

    PubMed  CAS  Google Scholar 

  • Hsu L., Jeng A. Y., and Chen K. Y. (1989) Induction of neurite outgrowth from chick embryonic ganglia explants by activators of protein kinase C.Neurosci. Lett. 99, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Jahn R., Schiebler W., Quiment C.; and Greengard P. (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles.Proc. Natl. Acad. Sci. USA 82, 4137–4141.

    Article  PubMed  CAS  Google Scholar 

  • Joachim C. L., Mori H., and Selkoe D. J. (1989) Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease.Nature 341, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Koo E.H., Sisodia S.S., Archer D. R., Martin L. J., Weidemann A., Beyreuther K., Fischer P., Masters C. L., and Price D. L. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport.Proc. Natl. Acad. Sci. USA 87, 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  • Kosik K. S. (1991) The neuritic dystrophy of Alzheimer’s disease: degeneration or regeneration? inGrowth Factors and Alzheimer’s Disease (Hefti F., Brachet P., Will B., and Christen Y., eds.), pp. 234–240, Springer-Verlag, New York.

    Google Scholar 

  • Kowall N. W. and Kosik K. S. (1987) Axonal disruption and aberrant localization of tau protein characterize neuropil pathology of Alzheimer disease.Ann. Neurol. 22, 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Lampert P. (1967) A comparative electron microscopic study of reactive, degenerating, regenerating, and dystrophic axons.J. Neuropathol. Exp. Neurol. 26, 345–368.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Terry R. D., Mallory M., Alford M., and Hansen L. (1990a) Diffuse plaques do not accentuate synapse loss in Alzheimer disease.Am. J. Pathol. 137, 1293–1297.

    PubMed  CAS  Google Scholar 

  • Masliah E., Cole G., Shimohama S., Hansen L. A., DeTeresa R., Terry R. D., and Saitoh, T. (1990b) Differential involvement of protein kinase C isozymes in Alzheimer’s disease.J. Neurosci. 10, 2113–2124.

    PubMed  CAS  Google Scholar 

  • Masliah E., Hansen L., Albright T., Mallory M., and Terry R. D. (1991a) Immunoelectron microscopic study of synaptic pathology in Alzheimer disease.Acta Neuropathol. 81, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Mallory M., Hansen L., Alford M., Albright T., DeTeresa R., Terry R. D., Baudier J., and Saitoh T. (1991b) Patterns of aberrant sprouting in Alzheimer disease.Neuron 6, 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Terry R. D., Alford M., DeTeresa R. M., and Hansen L. A. (1991c) Cortical and subcortical patterns of synaptophysin-like immunoreactivity in Alzheimer disease.Am. J. Pathol. 138, 235–246.

    PubMed  CAS  Google Scholar 

  • Masliah E., Fagan A. M., Terry R. D., DeTeresa R., Mallory M., and Gage F. H. (1991d) Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat.Exp. Neurol. 113, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Mallory M., Ge N., and Saitoh T. (1992a) Protein kinases and growth associated proteins in plaque formation in Alzheimer’s disease.Rev. Neurosci. 3, 99–107.

    Google Scholar 

  • Masliah E., Mallory M., Hansen L., Alford M., DeTeresa R., Terry R., Baudier J., and Saitoh T. (1992b) Localization of amyloid precursor protein in GAP43-immunoreactive aberrant sprouting neurites in Alzheimer’s disease.Brain Res. 574, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Mallory M., Ge N., and Saitoh T. (1992c) Amyloid precursor protein is localized in growing neurites of neonatal rat brain.Brain Res. 593, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1991) Evidence for the involvement of protein kinase C in neurodegenerative changes in cultured human cortical neurons.Exp. Neurol. 112, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Guthrie P. B., and Kater S.B. (1988) Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture.J. Neuro-sci. Res. 21, 447–464.

    Article  CAS  Google Scholar 

  • McKee A. C., Kosik K. S., and Kowall N. W. (1991) Neuritic pathology and dementia in Alzheimer’s disease.Ann. Neurol. 30, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y., Takeda M., Niigawa H., Hariguchi S., and Nishimura T. (1992) Amyloid beta-protein precursor deposition in rat hippocampus lesioned by ibotenic acid injection.Neurosci. Lett. 136, 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi S., Maeda S., Araki S., and Shimada K. (1988) Structure of the mouse serum amyloid P component gene.Biochem. Biophys. Res. Commun. 155, 1366–1373.

    Article  PubMed  CAS  Google Scholar 

  • Peschanski M. and Besson J-M. (1987) Structural alteration and possible growth of afferents after kainate lesion in the adult rat thalamus.J. Comp. Neurol. 258, 185–203.

    Article  PubMed  CAS  Google Scholar 

  • Roch J-M., Shapiro P., Sundsmo M. P., Otero D. A. C., Refolo L. M., Robakis N. K., Saitoh T. (1992) Bacterial expression, purification, and functional mapping of the amyloid beta/A4 protein precursor.J. Biol. Chem. 267, 2214–2221.

    PubMed  CAS  Google Scholar 

  • Routtenberg A., Colley P., Linden D., Lovinger D., Murakami K., and Sheu F-S. (1986) Phorbol ester promotes growth of synaptic plasticity.Brain Res. 378, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T., Sundsmo M., Roch J-M., Kimura N., Cole G., Schubert D., Hersdorf T., and Schenk D. B. (1989) Secreted form of amyloid beta protein precursor is involved in the growth regulation of fibroblasts.Cell 58, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T., Cole G., and Huynh V. (1990) Aberrant protein kinase C cascades in Alzheimer’s disease.Adv. Exp. Med. Biol. 265, 301–310.

    PubMed  CAS  Google Scholar 

  • Saitoh T., Masliah E., Jin L-W., Cole G. M., Wieloch T., and Shapiro P. (1991) Protein kinases and phosphorylation in neurological disorders and cell death.Lab. Invest. 64, 596–616.

    PubMed  CAS  Google Scholar 

  • Salbaum J. M., Weidemann A., Masters C. L., and Beyreuther K. (1989) The promoter of Alzheimer’s disease amyloid A4 precursor gene.Prog. Clin. Biol. Res. 317, 277–283.

    PubMed  CAS  Google Scholar 

  • Sheu F-S., Kasamatsu T., and Routtenberg A. (1990) Protein kinase C activity and substrate (F1/GAP-43) phosphorylation in developing cat visual cortex.Brain Res. 524, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu K., Ishii T., and McGeer P. L. (1991) Kainic acid induces reduction of amyloid precursor protein in rat neurons.Soc. Neurosci. Abstr. 17, 758.

    Google Scholar 

  • Siman R., Card J. P., Nelson R. B., and Davis L. G. (1989) Expression of betaamyloid precursor protein in reactive astrocytes following neuronal damage.Neuron 3, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Skene J. H. P., Jacobson R. D., Jackson-Snipes G., McGuire C. B., Norden J. J., and Freeman J. A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes.Science 233, 783–785.

    Article  PubMed  CAS  Google Scholar 

  • Takauchi S. and Miyoshi K. (1989) Degeneration of neuronal processes in rats induced by a protease inhibitor, leupeptin.Acta Neuropathol. 78, 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Tonder N., Sorensen T., and Zimmer J. (1990) Grafting of fetal CA3 neurons to excitotoxic, axon-sparing lesions of the hippocampal CA3 area in adult rats.Prog. Brain Res. 83, 391–409.

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y., Takio K., Titani K., Ihara Y., and Tomonaga M. (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein.Neuron 7, 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Whitson J. S., Selkoe D. J., and Cotman C. W. (1989) Amyloid a protein enhances survival of hippocampal neuronsin vitro.Science 243, 1488–1490.

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B. and Franke W. W. (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles.Cell 41, 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H., Nakazato Y., Hirai S., and Shoji M. (1990) Immunoelectron microscopic localization of amyloid beta protein in the diffuse plaques of Alzheimertype dementia.Brain Res. 508, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Yankner B. A., Duffy L. K., and Kirschner D. A. (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides.Science 250, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K., Aizawa T., and Nozawa A. (1989) Phorbol ester regulates the abundance of enkephalin precursor mRNA but not of amyloid beta-protein precursor mRNA in rat testicular peritubular cells.Biochem. Biophys. Res. Commun. 161, 568–575.

    Article  PubMed  CAS  Google Scholar 

  • Zilles K. and Wree A. (1985) Cortex: Areal and laminar structure, inThe Rat Nervous System (Paxinos G., ed.), pp. 375–393, Academic, San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masliah, E., Mallory, M., Ge, N. et al. Phorbol ester-induced neuritic alterations in the rat neocortex. Molecular and Chemical Neuropathology 20, 125–145 (1993). https://doi.org/10.1007/BF02815367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815367

Index Entries

Navigation