Skip to main content

Advertisement

Log in

Epidermal Growth Factor Suppresses the Development of GABAergic Neurons Via the Modulation of Perineuronal Net Formation in the Neocortex of Developing Rodent Brains

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K, Someya T, Kakita A, Takahashi H, Nawa H (2002) Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol Psychiatry 7:673–682. https://doi.org/10.1038/sj.mp.4001081

    Article  CAS  PubMed  Google Scholar 

  2. Piao YS, Iwakura Y, Takei N, Nawa H (2005) Differential distributions of peptides in the epidermal growth factor family and phosphorylation of ErbB 1 receptor in adult rat brain. Neurosci Lett 390:21–24. https://doi.org/10.1016/j.neulet.2005.07.048

    Article  CAS  PubMed  Google Scholar 

  3. Iwakura Y, Nawa H (2013) ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson’s disease. Front Cell Neurosci 7:4. https://doi.org/10.3389/fncel.2013.00004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iwakura Y, Piao YS, Mizuno M, Takei N, Kakita A, Takahashi H, Nawa H (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93:974–983. https://doi.org/10.1111/j.1471-4159.2005.03073.x

    Article  CAS  PubMed  Google Scholar 

  5. Iwakura Y, Zheng Y, Sibilia M, Abe Y, Piao YS, Yokomaku D, Wang R, Ishizuka Y, Takei N, Nawa H (2011) Qualitative and quantitative re-evaluation of epidermal growth factor-ErbB1 action on developing midbrain dopaminergic neurons in vivo and in vitro: target-derived neurotrophic signaling (part 1). J Neurochem 118:45–56. https://doi.org/10.1111/j.1471-4159.2011.07287.x. Epub 2011 May 19

    Article  CAS  PubMed  Google Scholar 

  6. Namba H, Nagano T, Jodo E, Eifuku S, Horie M, Takebayashi H, Iwakura Y, Sotoyama H, Takei N, Nawa H (2017) Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons. J Neurochem 142:886–900. https://doi.org/10.1111/jnc.14097

    Article  CAS  PubMed  Google Scholar 

  7. Miyata S, Kitagawa H (2017) Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 1861:2420–2434. https://doi.org/10.1016/j.bbagen.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  8. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18. https://doi.org/10.1016/j.brainresrev.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Avram S, Shaposhnikov S, Buiu C, Mernea M (2014) Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. Biomed Res Int 2014:642798. https://doi.org/10.1155/2014/642798

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–620. https://doi.org/10.1016/j.sbi.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  11. Nowicka D, Soulsby S, Skangiel-Kramska J, Glazewski S (2009) Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci 30:2053–2063. https://doi.org/10.1111/j.1460-9568.2009.06996.x

    Article  PubMed  Google Scholar 

  12. Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325:1258–1261. https://doi.org/10.1126/science.1174146

    Article  CAS  PubMed  Google Scholar 

  13. Balmer TS, Carels VM, Frisch JL, Nick TA (2009) Modulation of perineuronal nets and parvalbumin with developmental song learning. J Neurosci 29:12878–12885. https://doi.org/10.1523/jneurosci.2974-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15(414–22, s1–2). https://doi.org/10.1038/nn.3023

  15. Jodo E, Inaba H, Narihara I, Sotoyama H, Kitayama E, Yabe H, Namba H, Eifuku S, Nawa H (2019) Neonatal exposure to an inflammatory cytokine, epidermal growth factor, results in the deficits of mismatch negativity in rats. Sci Rep 9:7503. https://doi.org/10.1038/s41598-019-43923-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Futamura T, Kakita A, Tohmi M, Sotoyama H, Takahashi H, Nawa H (2003) Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: implication for epidermal growth factor in cognitive development. Mol Psychiatry 8:19–29. https://doi.org/10.1038/sj.mp.4001138

    Article  CAS  PubMed  Google Scholar 

  17. Yukawa T, Iwakura Y, Takei N, Saito M, Watanabe Y, Toyooka K, Igarashi M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Iritani S, Niwa SI, Takeuchi R, Takahashi H, Kakita A, Someya T, Nawa H (2018) Pathological alterations of chondroitin sulfate moiety in postmortem hippocampus of patients with schizophrenia. Psychiatry Res 270:940–946. https://doi.org/10.1016/j.psychres.2018.10.062

    Article  CAS  PubMed  Google Scholar 

  18. Eda T, Mizuno M, Araki K, Iwakura Y, Namba H, Sotoyama H, Kakita A, Takahashi H, Satoh H, Chan SY, Nawa H (2013) Neurobehavioral deficits of epidermal growth factor-overexpressing transgenic mice: impact on dopamine metabolism. Neurosci Lett 547:21–25. https://doi.org/10.1016/j.neulet.2013.04.055

    Article  CAS  PubMed  Google Scholar 

  19. Mak KK, Chan SY (2003) Epidermal growth factor as a biologic switch in hair growth cycle. J Biol Chem 278:26120–26126. https://doi.org/10.1074/jbc.M212082200

    Article  CAS  PubMed  Google Scholar 

  20. Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H (2017) Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS ONE 12:e0174780. https://doi.org/10.1371/journal.pone.0174780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Elsevier/AP, Amsterdam

    Google Scholar 

  22. Iwakura Y, Kawahara-Miki R, Kida S, Sotoyama H, Gabdulkhaev R, Takahashi H, Kunii Y, Hino M, Nagaoka A, Izumi R, Shishido R, Someya T, Yabe H, Kakita A, Nawa H (2022) Elevation of EGR1/zif268, a neural activity marker, in the auditory cortex of patients with Schizophrenia and its animal model. Neurochem Res 47:2715–2727. https://doi.org/10.1007/s11064-022-03599-9

    Article  CAS  PubMed  Google Scholar 

  23. Roghani M, Becherer JD, Moss ML, Atherton RE, Erdjument-Bromage H, Arribas J, Blackburn RK, Weskamp G, Tempst P, Blobel CP (1999) Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J Biol Chem 274:3531–3540. https://doi.org/10.1074/jbc.274.6.3531

    Article  CAS  PubMed  Google Scholar 

  24. Moss ML, Rasmussen FH (2007) Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal Biochem 366:144-8. doi: S0003-2697(07)00277-1 [pii]. https://doi.org/10.1016/j.ab.2007.04.043.

  25. Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa H (2011) Dopamine-dependent ectodomain shedding and release of epidermal growth factor in developing striatum: target-derived neurotrophic signaling (part 2). J Neurochem 118:57–68. https://doi.org/10.1111/j.1471-4159.2011.07295.x

    Article  CAS  PubMed  Google Scholar 

  26. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515. https://doi.org/10.1016/s0166-2236(98)01298-3

    Article  CAS  PubMed  Google Scholar 

  27. Hensch TK (2005) Critical period mechanisms in developing visual cortex. Curr Top Dev Biol 69:215–237. https://doi.org/10.1016/s0070-2153(05)69008-4

    Article  CAS  PubMed  Google Scholar 

  28. Kusche-Gullberg M, Kjellén L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13:605–611. https://doi.org/10.1016/j.sbi.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281:17789–17800. https://doi.org/10.1074/jbc.M600544200

    Article  CAS  PubMed  Google Scholar 

  30. Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM, Leopold WR, Connors RW, Bridges AJ (1994) A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 265:1093–1095. https://doi.org/10.1126/science.8066447

    Article  CAS  PubMed  Google Scholar 

  31. Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226–234. https://doi.org/10.1111/j.1471-4159.2004.02857.x

    Article  CAS  PubMed  Google Scholar 

  32. Burch ML, Getachew R, Osman N, Febbraio MA, Little PJ (2013) Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells. J Biol Chem 288:7410–7419. https://doi.org/10.1074/jbc.M112.400259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikitovic D, Berdiaki A, Banos A, Tsatsakis A, Karamanos NK, Tzanakakis GN (2013) Could growth factor-mediated extracellular matrix deposition and degradation offer the ground for directed pharmacological targeting in fibrosarcoma? Curr Med Chem 20:2868–2880. https://doi.org/10.2174/0929867311320230003

    Article  CAS  PubMed  Google Scholar 

  34. Karkkainen I, Rybnikova E, Pelto-Huikko M, Huovila AP (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547–560. https://doi.org/10.1006/mcne.2000.0848

    Article  CAS  PubMed  Google Scholar 

  35. Luo J (2005) The role of matrix metalloproteinases in the morphogenesis of the cerebellar cortex. Cerebellum 4:239–245. https://doi.org/10.1080/14734220500247646

    Article  CAS  PubMed  Google Scholar 

  36. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L (2019) MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 76:3207–3228. https://doi.org/10.1007/s00018-019-03180-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kärkkäinen I, Rybnikova E, Pelto-Huikko M, Huovila AP (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547–560. https://doi.org/10.1006/mcne.2000.0848

    Article  CAS  PubMed  Google Scholar 

  38. Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF (2017) Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 9:1607–1622. https://doi.org/10.18632/aging.101256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tewari BP, Sontheimer H (2019) Protocol to quantitatively assess the structural integrity of Perineuronal Nets ex vivo. Bio Protoc 9:e3234. https://doi.org/10.21769/BioProtoc.3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quirion R, Araujo D, Nair NP, Chabot JG (1988) Visualization of growth factor receptor sites in rat forebrain. Synapse 2:212–218. https://doi.org/10.1002/syn.890020307

    Article  CAS  PubMed  Google Scholar 

  41. Wamsley B, Fishell G (2017) Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 18:299–309. https://doi.org/10.1038/nrn.2017.30

    Article  CAS  PubMed  Google Scholar 

  42. Lim L, Mi D, Llorca A, Marín O (2018) Development and functional diversification of Cortical Interneurons. Neuron 100:294–313. https://doi.org/10.1016/j.neuron.2018.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siebert JR, Conta Steencken A, Osterhout DJ (2014) Chondroitin sulfate proteoglycans in the nervous system: inhibitors to repair. Biomed Res Int 2014:845323. https://doi.org/10.1155/2014/845323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeuchi K, Yoshioka N, Higa Onaga S, Watanabe Y, Miyata S, Wada Y, Kudo C, Okada M, Ohko K, Oda K, Sato T, Yokoyama M, Matsushita N, Nakamura M, Okano H, Sakimura K, Kawano H, Kitagawa H, Igarashi M (2013) Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat Commun 4:2740. https://doi.org/10.1038/ncomms3740

    Article  CAS  PubMed  Google Scholar 

  45. Butterfield KC, Conovaloff A, Caplan M, Panitch A (2010) Chondroitin sulfate-binding peptides block chondroitin 6-sulfate inhibition of cortical neurite growth. Neurosci Lett 478:82–87. https://doi.org/10.1016/j.neulet.2010.04.070

    Article  CAS  PubMed  Google Scholar 

  46. Takei N, Yokomaku D, Yamada T, Nagano T, Kakita A, Namba H, Ushiki T, Takahashi H, Nawa H (2022) EGF downregulates presynaptic maturation and suppresses synapse formation in Vitro and in vivo. Neurochem Res 47:2632–2644. https://doi.org/10.1007/s11064-021-03524-6

    Article  CAS  PubMed  Google Scholar 

  47. Nagano T, Namba H, Abe Y, Aoki H, Takei N, Nawa H (2007) In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. Eur J Neurosci 25:380–390. https://doi.org/10.1111/j.1460-9568.2007.05297.x

    Article  PubMed  Google Scholar 

  48. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M (2017) Removal of Perineuronal nets unlocks juvenile plasticity through Network mechanisms of decreased inhibition and increased Gamma Activity. J Neurosci 37:1269–1283. https://doi.org/10.1523/jneurosci.2504-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518:389–404. https://doi.org/10.1002/cne.22229

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347–358. https://doi.org/10.1093/cercor/7.4.347

    Article  CAS  PubMed  Google Scholar 

  51. Yamaguchi T, Ozawa H, Yamaguchi S, Hamaguchi S, Ueda S (2021) Calbindin-positive neurons co-express functional markers in a location-dependent Manner within the A11 region of the rat brain. Neurochem Res 46:853–865. https://doi.org/10.1007/s11064-020-03217-6

    Article  CAS  PubMed  Google Scholar 

  52. McDonald AJ, Hamilton PG, Barnstable CJ (2018) Perineuronal nets labeled by monoclonal antibody VC1.1 ensheath interneurons expressing parvalbumin and calbindin in the rat amygdala. Brain Struct Funct 223:1133–1148. https://doi.org/10.1007/s00429-017-1542-8

    Article  CAS  PubMed  Google Scholar 

  53. Horii-Hayashi N, Sasagawa T, Hashimoto T, Kaneko T, Takeuchi K, Nishi M (2015) A newly identified mouse hypothalamic area having bidirectional neural connections with the lateral septum: the perifornical area of the anterior hypothalamus rich in chondroitin sulfate proteoglycans. Eur J Neurosci 42:2322–2334. https://doi.org/10.1111/ejn.13024

    Article  PubMed  Google Scholar 

  54. Nawa H, Takei N (2006) Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 56:2–13. https://doi.org/10.1016/j.neures.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura JP, Schroeder A, Gibbons A, Sundram S, Hill RA (2022) Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain Behav Immun 100:70–82. https://doi.org/10.1016/j.bbi.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  56. Ketharanathan T, Pereira A, Reets U, Walker D, Sundram S (2021) Brain changes in NF-κB1 and epidermal growth factor system markers at peri-pubescence in the spiny mouse following maternal immune activation. Psychiatry Res 295:113564. https://doi.org/10.1016/j.psychres.2020.113564

    Article  CAS  PubMed  Google Scholar 

  57. Narihara I, Kitajo K, Namba H, Sotoyama H, Inaba H, Watanabe D, Nawa H (2021) Rat call-evoked electrocorticographic responses and Intercortical Phase Synchrony Impaired in a Cytokine-Induced Animal Model for Schizophrenia. Neurosci Res Doi. https://doi.org/10.1016/j.neures.2021.10.007

    Article  Google Scholar 

  58. Jaaro-Peled H, Sawa A (2020) Neurodevelopmental factors in Schizophrenia. Psychiatr Clin North Am 43:263–274. https://doi.org/10.1016/j.psc.2020.02.010

    Article  PubMed  Google Scholar 

  59. Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT (2013) A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501:543–546. https://doi.org/10.1038/nature12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30:14964–14971. https://doi.org/10.1523/jneurosci.4812-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoshioka N, Miyata S, Tamada A, Watanabe Y, Kawasaki A, Kitagawa H, Takao K, Miyakawa T, Takeuchi K, Igarashi M (2017) Abnormalities in perineuronal nets and behavior in mice lacking CSGalNAcT1, a key enzyme in chondroitin sulfate synthesis. Mol Brain 10:47. https://doi.org/10.1186/s13041-017-0328-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perry TL, Kish SJ, Buchanan J, Hansen S (1979) Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet 1:237–239. https://doi.org/10.1016/s0140-6736(79)90767-0

    Article  CAS  PubMed  Google Scholar 

  63. Bird ED, Spokes EG, Barnes J, MacKay AV, Iversen LL, Shepherd M (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet 2:1157–1158. https://doi.org/10.1016/s0140-6736(77)91542-2

    Article  CAS  PubMed  Google Scholar 

  64. Kunii Y, Zhang W, Xu Q, Hyde TM, McFadden W, Shin JH, Deep-Soboslay A, Ye T, Li C, Kleinman JE, Wang KH, Lipska BK (2015) CHRNA7 and CHRFAM7A mRNAs: co-localized and their expression levels altered in the postmortem dorsolateral prefrontal cortex in major psychiatric disorders. Am J Psychiatry 172:1122–1130. https://doi.org/10.1176/appi.ajp.2015.14080978

    Article  PubMed  Google Scholar 

  65. Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA (2016) Reduced labeling of parvalbumin neurons and Perineuronal Nets in the Dorsolateral Prefrontal cortex of subjects with Schizophrenia. Neuropsychopharmacology 41:2206–2214. https://doi.org/10.1038/npp.2016.24

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, Woo TU (2013) Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74:427–435. https://doi.org/10.1016/j.biopsych.2013.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67:155–166. https://doi.org/10.1001/archgenpsychiatry.2009.196

    Article  PubMed  PubMed Central  Google Scholar 

  68. Steullet P, Cabungcal JH, Bukhari SA, Ardelt MI, Pantazopoulos H, Hamati F, Salt TE, Cuenod M, Do KQ, Berretta S (2018) The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry 23:2057–2065. https://doi.org/10.1038/mp.2017.230

    Article  CAS  PubMed  Google Scholar 

  69. Gomes FV, Zhu X, Grace AA (2019) Stress during critical periods of development and risk for schizophrenia. Schizophr Res 213:107–113. https://doi.org/10.1016/j.schres.2019.01.030

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fujihara K (2023) Beyond the γ-aminobutyric acid hypothesis of schizophrenia. Front Cell Neurosci 17:1161608. https://doi.org/10.3389/fncel.2023.1161608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferguson BR, Gao WJ (2018) PV interneurons: critical regulators of E/I balance for Prefrontal Cortex-Dependent Behavior and Psychiatric disorders. Front Neural Circuits 12:37. https://doi.org/10.3389/fncir.2018.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caballero A, Tseng KY (2016) GABAergic function as a limiting factor for Prefrontal Maturation during Adolescence. Trends Neurosci 39:441–448. https://doi.org/10.1016/j.tins.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Eiko Kitayama and Dr. Meiko Kawamura for their technical assistance with the experiments.

Funding

This study was supported by KAKENHI under Grant Number 18K06460.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Y. I., H. N, and N. T. contributed to the study conception and design. Y.I. and Y.K. performed experiments. Materials were prepared or collected by Y. I., Y. K., and H. N. The first draft of the manuscript was written by Y. I. and all authors commented on previous versions of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuriko Iwakura.

Ethics declarations

Institutional Review Board Statement

The animal study protocol was approved by the Animal Use and Care Committee of Niigata University (protocol code SA00246, 2018 May 7, SA00664, 2021 April 05, SA00835, 2023 January 30.)

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwakura, Y., Kobayashi, Y., Namba, H. et al. Epidermal Growth Factor Suppresses the Development of GABAergic Neurons Via the Modulation of Perineuronal Net Formation in the Neocortex of Developing Rodent Brains. Neurochem Res 49, 1347–1358 (2024). https://doi.org/10.1007/s11064-024-04122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-024-04122-y

Keywords

Navigation