Skip to main content
Log in

Acrylamide and carbon disulfide treatments increase the rate of rat brain tubulin polymerization

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Acrylamide and carbon disulfide produce central-peripheral distal axonopathy in experimental animals and humans. The main feature of this disease is the focal swellings containing neurofilaments in distal axons, followed by nerve degeneration beyond these swellings. We studied the possible role of tubulin assembly kinetics in this disease. The rats were either administered acrylamide (50 mg/kg, ip, saline) or exposed to carbon disulfide (700 ppm, 9h) via inhalation for 12 and 15 d, respectively. Tubulin, purified from both acrylamide-(10.37±0.3 vs 11.3±0.15) and carbon disulfide-treated (9.72±0.5 vs 11.18±0.25) rat brains showed increase inV max (OD/min × 103) of its polymerization. However, only acrylamide treatment showed a decrease in time toV max, when brain supernatant was used for tubulin polymerization. In vitro addition of acrylamide (0.1–1 mM) to bovine brain tubulin also showed a decrease in time toV max (16–21%) of its polymerization. Carbon disulfide treatment of rats, on the other hand, showed a decrease in MAP-2 and an increase in a 120-kDa peptide concentration. The latter showed immunoreactivity with anti-MAP-2. The increase in the rate of tubulin polymerization by acrylamide and carbon disulfide treatment may alter the rate of transport of axonal consituents, including neurofilament, and contribute toward their accumulation in the focal swellings observed in this neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DFP:

diisopropyl phosphorofluoridate

DTT:

dithiothreitol

DMHD:

3,4-dimethyl-2,5-hexanedione

EGTA:

ethyleneglycol-bis(β-aminoethyl ether),N, N, N′, N′-tetraacetic acid

EDTA:

ethylenediaminetetraacetic acid

GTP:

guanosine-5′-triphosphate

2,5-HD:

2,5-hexanedione

IDPN:

β, β′-imino-3-dipropionitrile

PMSF:

phenylmethylsulfonyl fluoride

PIPES:

piperazine-N,N′-bis[2-ethanesulfonic acid]

PAGE:

polyacrylamilde gel electrophoresis

SDS:

sodium dodecyl sulfate

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  • Abou-Donia M. B., Ibrahim S. M., Corcoran J. J., Lack L., Friedman M. A., and Lapadula D. M. (1993) Neurotoxicity of glycidamide, an acrylamide metabolite, following intraperitoneal injection in rats.J. Toxicol. Environ. Health 39, 447–464.

    Article  PubMed  CAS  Google Scholar 

  • Amarnath V., Anthony D. C., Valentine W. M., and Graham D. G. (1991) The molecular mechanism of the carbon disulfide mediated cross-linking of proteins.Chem. Res. Toxicol. 4, 148–150.

    Article  PubMed  CAS  Google Scholar 

  • Anthony D. C., Giangaspero F., and Graham D. G. (1983) The spatio-temporal pattern of axonopathy associated with the neurotoxicity of 3,4-dimethyl-2,5-hexanedione in the rat.J. Neuropathol. Exp. Neurol. 42, 548–560.

    PubMed  CAS  Google Scholar 

  • Black M. M. and Baas P. W. (1989) The basis of polarity in neurons.Trends Neurosci. 12, 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Boekelheide K. (1987) 2,5-hexanedione alters microtubule assembly. I. Testicular atrophy, not nervous system toxicity, correlates with enhanced tubulin polymerization.Toxicol. Appl. Pharmacol. 88, 370–382.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Carrington C. D. and Abou-Donia M. B. (1985) Characterization of [3H]diisopropyl phosphorofluoridate-binding proteins in hen brain.Biochem. J. 228, 537–544.

    PubMed  CAS  Google Scholar 

  • Carrington C. D., Lapadula D. M., Dulak L., Friedman M., and Abou-Donia M. B. (1991)In vivo binding of [14C]acrylamide to proteins in the mouse nervous system.Neurochem. Int. 18, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan N. B., Spencer P. S. and Sabri M. I. (1993) Effect of acrylamide on the distribution of microtubule-associated proteins (MAP1 and MAP2) in selected regions of rat brain.Mol. Chem. Neuropathol. 18, 225–245.

    Article  PubMed  CAS  Google Scholar 

  • Clerici W. J. and Fechter L. D. (1991) Effects of chronic disulfide inhalation on sensory and motor function in the rat.Neurotoxicol. Teratol. 13, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Dustin P. (1984)Microtubules. Springer-Verlag, New York.

    Google Scholar 

  • Edwards P. M., Sporel-Ozakat E., and Gispen W. H. (1991) Neurotoxic acrylamide and neurotrophic melanocortin peptides—can contrasting actions provide clues about modes of action?Neuropathol. Appl. Neurobiol. 17, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Fliegner K. H. and Liem R. K. H. (1991) Cellular and molecular biology of neuronal intermediate filaments.Inter. Rev. Cytol. 131, 109–167.

    CAS  Google Scholar 

  • Funk K. A., Henderson J. D., Liu C.-H., Higgins R. J., and Wilson B. W. (1994) Neuropathology of organophosphorus-induced delayed neuropathy (OPIDN) in young chicks.Arch. Toxicol. 68, 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Griffin J. W., Fahnestock K. E., Price D. L., and Cork L. C. (1983a) Cytoskeletal disorganization induced by local application of IDPN and 2,5-hexanedione.Ann. Neurol. 14, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Griffin J. W., Fahnestock K. E., Price D. L., and Hoffman P. N. (1983b) Microtubule-neurofilament segregation produced by β,β′-iminodipropionitrile: Evidence for the association of fast axonal transport with microtubules.J. Neurosci. 3, 557–566.

    PubMed  CAS  Google Scholar 

  • Gupta R. P. and Abou-Donia M. B. (1994)In vivo andin vitro effects of diisopropyl phosphorofluoridate (DFP) on the rate of hen brain tubulin polymerization.Neurochem. Res. 19, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K., Kurosaka Y., Tanii H., and Hayashi M. (1988) Immunochemical studies of acrylamide-associated neuropathology.Toxicology 49, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld M. and Weber K. (1992) A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly and disassembles preformed filaments.J. Cell Biol. 116, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N. (1982) Cross-linker system between neurofilaments, microtubules, and membrane organelles in frog axons revealed by the quick-freeze, deepetching method.J. Cell Biol. 94, 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Huber G. and Schuler A. (1991) Characterization of a new 120 kDa microtubule-associated protein (MAP) of rat brain.Neurosci. Lett. 128, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K., Grundke-Iqbal I., Tanweer Z., Merz P. A., Wen G. Y., Shaikh S., Wisniewski H. M., Alafuzoff I., and Winblad B. (1986) Defective brain microtubule assembly in Alzheimer's disease.Lancet 11, 421–426.

    Article  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage T4.Nature 277, 680–685.

    Article  Google Scholar 

  • Lapadula D. M., Bowe M., Carrington C. D., Dulak L., Friedman M., and Abou-Donia M. B. (1989)In vitro binding of [14C]acrylamide to neurofilament and microtubule proteins of rats.Brain Res. 481, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Melki R., Kerjan P., Waller J.-P., Carlier M.-F., and Pantaloni D. (1991) Interaction of microtubule-associated proteins with microtubules: Yeast lysyland valyl-tRNA synthetases and tau 218–235 synthetic peptide as model systems.Biochemistry 30, 11,536–11,545.

    Article  CAS  Google Scholar 

  • Minana M.-D., Felipo V. and Grisolia S. (1989) Assembly and disassembly of brain tubulin is affected by high ammonia levels.Neurochem. Res. 14, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Oteiza P. I., Golub M. S., Gershwin M. E., Donald J. M., and Keen C. L. (1989) The influence of high dietary aluminum on brain microtubule polymerization in mice.Toxicol. Lett. 47, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M., Penton R., Weiss H. S., Miller C. H. Jr., Sahenk Z., Autilio-Gambetti L., and Gambetti P. (1987) Carbon disulfide axonopathy. Another experimental model characterized by acceleration of neurofilament transport and distinct changes of axonal size.Brain Res. 424, 272–280.

    Article  PubMed  CAS  Google Scholar 

  • Peterson G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable.Anal. Biochem. 83, 346–356.

    Article  PubMed  CAS  Google Scholar 

  • Reagan K. E., Wilmarth K. R., Friedman M., and Abou-Donia M. B. (1994) Acrylamide increasesin vitro calcium and calmodulin-dependent kinase-mediated phosphorylation of rat brain and spinal cord neurofilament proteins.Neurochem. Int. 25, 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal S. and Kaufman S. (1974) Vincristine neurotoxicity.,Ann. Intern. Med. 80, 733–737.

    PubMed  CAS  Google Scholar 

  • Sayre L. M., Autilio-Gambetti L., and Gambetti P. (1985) Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments.Brain Res Rev. 10, 69–83.

    Article  CAS  Google Scholar 

  • Seppalainen A. M. and Haltia M. (1980) Carbon disulfide, inExperimental and Clinical Neurotoxicology (Spencer P. S. and Schaumburg H. H., eds.), William and Wilkins, Baltimore, pp. 356–373.

    Google Scholar 

  • Sickles D. W. (1989) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. I. The effects of single doses of acrylamide on the rate and capacity of transport.Neurotoxicology 10, 91–102.

    PubMed  CAS  Google Scholar 

  • US Environmental Protection Agency, Office of Drinking Water, Washington, DC (July 1987) TR-832-104A. Final draft for the drinking water criteria document on acrylamide.

  • US Environmental Protection Agency, Office of Toxic Substances, Washington, DC (March 1988) Preliminary Assessment of Health Risks from Exposure to Acrylamide.

  • Vallano M. L., Goldenring J. R., Lasher R. S., and DeLorenzo R. J. (1986) Association of calcium/calmodulin-dependent kinase with cytoskeletal preparations: Phosphorylation of tubulin, neurofilament, and microtubule-associated proteins. Ann. NYAcad. Sci. 466, 357–374.

    Article  PubMed  CAS  Google Scholar 

  • Vallee R. B. and Shpetner H. S. (1990) Motor proteins of cytoplasmic microtubules.Ann. Rev. Biochem. 59, 909–932.

    Article  PubMed  CAS  Google Scholar 

  • Weiss H. D., Walker M. D., and Wiernik P. H. (1974) Neurotoxicity of commonly used antineoplastic agents.New Engl. J. Med. 291, 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Wilmarth K. R., Viana M. E., and Abou-Donia M. B. (1993) Carbon disulfide (CS2) inhalation increases Ca2+/calmodulin-dependent phosphorylation of cytoskeletal proteins in the rat central nervous system.Brain Res. 628, 293–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.P., Abou-Donia, M.B. Acrylamide and carbon disulfide treatments increase the rate of rat brain tubulin polymerization. Molecular and Chemical Neuropathology 30, 223–237 (1997). https://doi.org/10.1007/BF02815100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815100

Index Entries

Navigation