Skip to main content
Log in

Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production byPorphyridium cruentum

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Growth and extracellular polysaccharide production byPorphyridium cruentum were measured as a function of several culture parameters. Photon flux density of 75 μmol m−2 s−1 and CO2 concentration of 2.5% were found to be optimum for both growth and extracellular polysaccharide production. Interactive studies on these two parameters further confirmed that at these levels of photon flux density and CO2, when applied together, both growth (5.9·107 cells per mL) and extracellular polysaccharide production (1.9 g/L) were at the maximum. Maximum growth and extracellular polysaccharide production were observed at inoculum density of 106 cells per mL and aeration rate of 500 mL air per min per liter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EP:

extracellular polysaccharide

PFD:

photon flux density

References

  • Anderson L.E.: Interaction between phytochemistry and activity of enzymes, pp. 271–281 inPhotosynthesis, II. Photosynthetic Carbon Metabolism and Related Processes (M. Gibbs, E. Latzko, Eds). Springer-Verlag, Berlin 1979.

    Google Scholar 

  • Arad S., Adda M., Cohen E.: The potential of production of sulphate polysaccharides fromPorphyridium.Plant & Soil89, 117–127 (1985).

    Article  CAS  Google Scholar 

  • Arad S., Friedmam O., Rotem A.: Effect of nitrogen on polysaccharide production in aPorphyridium sp.Appl. Environ. Microbiol.54, 2411–2414 (1988).

    PubMed  CAS  Google Scholar 

  • Brody M., Vatter A.E.: Observations on cellular structures ofPorphyridium cruentum.J. Biophys. Biochem. Cytol.5, 289–299 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Clement-Metral J.D.: Preparation and some properties of protoplasts from red algaPorphyridium cruentum.J. Microsc. Biol. Cell26, 167–172 (1976).

    CAS  Google Scholar 

  • Codd G.A., Stewart R.: Photoinactivation of ribulose bisphosphate carboxylase from green algae and cyanobacteria.FEMS Microbiol. Lett.8, 237–240 (1980).

    Article  CAS  Google Scholar 

  • Cohen Z., Arad S.: A closed system for outdoor cultivation ofPorphyridium.Biomass18, 59–67 (1989).

    Article  Google Scholar 

  • Dermoun D., Chaumont D., Thebault J., Dauta A.: Modelling of growth ofPorphyridium cruentum in connection with two interdependent factors: Light and temperature.Bioresource Technol.42, 113–117 (1992).

    Article  Google Scholar 

  • Gantt E., Lipschultz C.A.: Phycobilisomes ofPorphyridium cruentum.J. Cell Biol.54, 313–324 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Golueke C.G., Oswald W.J.: The mass culture ofPorphyridium cruentum.Appl. Microbiol.10, 102–107 (1962).

    PubMed  CAS  Google Scholar 

  • Gudin C., Chaumont D.: Cell fragility: the key problem of microalgae mass production in close photobioreactors.Bioresource Technol.38, 145–151 (1991).

    Article  Google Scholar 

  • Iqbal M., Grey D., Stepan-Sarkissian G.: Effect of nitrogen on growth, extracellular polysaccharide and intracellular phycoerythrin production by the unicellular red algaPorphyridium cruentum.Acta Microbiol. Pol.41, 65–73 (1992).

    CAS  Google Scholar 

  • Iqbal M., Grey D., Stepan-Sarkissian G., Fowler M.W.: A flat-sided photobioreactor for culturing of microalgae.Aquacult. Eng.12, 183–190 (1993a).

    Article  Google Scholar 

  • Iqbal M., Grey D., Stepan-Sarkissian G., Fowler M.W.: Interactions between the unicellular red algaPorphyridium cruentum and associated bacteria.Eur. J. Phycol.28, 63–68 (1993b).

    Article  Google Scholar 

  • Jones R.F., Speer H.L., Kury W.: Studies on the growth of the red algaPorphyridium cruentum.Physiol. Plant.16, 636–643 (1963).

    Article  CAS  Google Scholar 

  • Lee Y.K., Tan H.M.: Effect of temperature, light intensity and dilution rate on the cellular composition of red algaPorphyridium cruentum in light chemostat cultures.MIRCEN J.4, 231–237 (1988).

    Article  CAS  Google Scholar 

  • Lee Y.K., Vonshak A.: The kinetics of photoinhibition and its recovery in the red algaPorphyridium cruentum Arch. Microbiol.150, 529–533 (1988).

    Article  CAS  Google Scholar 

  • Minkova K.M., Georgiev D.I., Houbavens-Ka N.B.: Light and temperature dependence of algal biomass and extracellular polysaccharide production fromP. cruentum.Biol. Physiol.40, 87–89 (1987).

    Google Scholar 

  • Nielsen E.S.: Carbon dioxide concentration, respiration during photosynthesis and maximum quantum yield of photosynthesis.Plant Physiol.40, 87–89 (1953).

    Google Scholar 

  • Ramus J.: Alcian Blue: A quantitative aqueous assay for algal acid and sulphated polysaccharides.J. Phycol.13, 345–348 (1977).

    CAS  Google Scholar 

  • Řezanka T., Doucha J., Mareš P., Podojil M.: Effect of cultivation temperature and light intensity on fatty acid production in the red algaPorphyridium cruentum.J. Basic Microbiol.27, 275–278 (1987).

    Article  Google Scholar 

  • Richmond A.: Outdoor mass cultures of microalgae, pp. 285–330 inMicroalgal Mass Culture (A. Richmond, Ed.). CRC Press, Boca Raton (Florida) 1986.

    Google Scholar 

  • Richmond A.: The challenge confronting industrial microagriculture: High photosynthetic efficiency in large-scale reactors.Hydrobiologia151/152, 117–121 (1987).

    Article  Google Scholar 

  • Savins, J.G.: Oil recovery process employing thickened aqueous driving fluid.US Pat. 4 079 544 (1978).

  • Sommerfeld M.R., Nichols H.W.: Comparative studies on the genusPorphyridium Naeg.J. Phycol.6, 67–78 (1970).

    Google Scholar 

  • Sorokin C., Krauss R.W.: The dependence of cell division inChlorella on temperature and light intensity.Am. J. Bot.52, 331–339 (1965).

    Article  Google Scholar 

  • Tamiya H.: Mass culture of algae.Ann. Rev. Plant Physiol.18, 309–334 (1957).

    Article  Google Scholar 

  • Thepenier C., Gudin C.: Studies on optimal conditions for polysaccharide production byPorphyridium cruentum.MIRCEN J.1, 257–268 (1985).

    Article  CAS  Google Scholar 

  • Thepenier C., Gudin C., Thomas D.: Immobilization ofPorphyridium cruentum in polyurethane foam for the production of polysaccharide.Biomass7, 225–240 (1985).

    Article  CAS  Google Scholar 

  • Vonshak A., Cohen Z., Richmond A.: The feasibility of mass cultivation ofPorphyridium.Biomass8, 13–25 (1985).

    Article  CAS  Google Scholar 

  • Vonshak A., Abeliovich A., Bousibba S., Arad S., Richmond A.: Production ofSpirulina biomass: Effects of environmental factors and population density.Biomass2, 175–185 (1982).

    Article  Google Scholar 

  • von Witsch H., Bolze A., Hornung J.: Production of biomass and of extracellular polysaccharides in batch cultures ofPorphyridium aerugineum, Rhodophyceae.Ber. Dtsch. Bot. Ges.96, 469–481 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Zafar, S.I. Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production byPorphyridium cruentum . Folia Microbiol 38, 509–514 (1993). https://doi.org/10.1007/BF02814405

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814405

Keywords

Navigation