Skip to main content
Log in

Possible pathways of the gene flow inTaraxacum sect.Ruderalia

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Reproductive behaviour and the pathways of gene flow among ploidy levels were studied experimentally inTaraxacum sect.Ruderalia. Diploid, triploid and tetraploid individuals were sampled from mixed diploid — polyploid natural populations. 136 experimental hybridizations between the plants of different ploidy levels were performed. Seeds resulting from these crosses, those obtained from isolated anthodia as well as from open pollinated anthodia (both from cultivated and wild plants) were subjected to the flow-cytometric seed screening (FCSS) to determine ploidy levels in the progeny and to infer breeding behaviour of maternal plants. Three possible pathways of the gene flow were studied: (A) fertilization of sexuals by pollen of apomicts, (B) BIII hybrid formation, (C) facultative apomixis. Diploid maternal plants when experimentally crossed with triploid pollen donors produced diploids and polyploid progeny, while when pollinated with a mixture of the pollen of diploids and triploids or insect pollinated, no polyploids were discovered. It seems that in the mixture with the pollen of diploids, the pollen of triploids is ineffective. Tetraploids produce hybrids much easier with diploid mothers and their role in wild populations requires further study. Triploid mothers, even those with subregular pollen did not show traces of facultative apomixis. BIII hybrids were present in the progeny of both triploids and tetraploids, in tetraploids in quite high percentages (up to 50% of the progeny in some crosses).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asker S.E. &Jerling L. (1992):Apomixis in plants. CRC Press, Boca Raton, Ann Arbor, London, Tokyo.

    Google Scholar 

  • Doll R. (1982): Grundriss der Evolution der GattungTaraxacumZinn.Feddes Repert. 93: 481–624.

    Article  Google Scholar 

  • Fürnkrantz D. (1961): Cytogenetische Untersuchungen anTaraxacum im Raume von Wein. II. Hybriden zwichenT. officinale undT. palustre.Oesterr. Bot. Z. 108: 408–415.

    Article  Google Scholar 

  • Hughes J. &Richards A.J. (1988): The genetic structure of populations of sexual and asexualTaraxacum (dandelions).Heredity 60: 161–171.

    Google Scholar 

  • Jenniskens M.P.J., den Nijs J.C.M. &Sterk A.A. (1985): Crossability and hybridization of taxa ofTaraxacum sectionTaraxacum from central and western Europe.Proc. Kon. Ned. Akad. Wetensch. C 88: 297–338.

    Google Scholar 

  • Kirschner J. &Štěpánek J. (1996): Modes of speciation and evolution of the sections inTaraxacum.Folia Geobot. Phytotax. 31: 415–426.

    Google Scholar 

  • Kipschner J. &Štěpánek J. (1998): A monograph ofTaraxacum sect.Palustria. Institute of Botany, Průhonice.

    Google Scholar 

  • Kirschner J. &Štěpánek J. (2004): New sections inTaraxacum.Folia Geobot. 39: 259–274.

    Article  Google Scholar 

  • Małecka J. (1965): Embryological studies inTaraxacum palustre.Acta Biol. Cracov., Ser. Bot. 8: 223–235.

    Google Scholar 

  • Małecka J. (1967): Processes of intraspecific differentiation in the genusTaraxacum.Genet. Polon. 8: 185–188.

    Google Scholar 

  • Małecka J. (1973): Problems of the mode of reproduction in microspecies ofTaraxacum sectionPalustriaDahlstedt.Acta Biol. Cracov., Ser. Bot. 16: 37–84.

    Google Scholar 

  • Matzk F., Meister A. &Schubert I. (2000): An efficient screen for reproductive pathways using mature seeds of monocots and dicots.Pl. J. 21: 97–108.

    Article  CAS  Google Scholar 

  • Matzk F., Meister A., Brutovská R. &Schubert I. (2001): Reconstruction of reproductive diversity inHypericum perforatum L. opens novel strategies to manage apomixis.Pl. J. 26: 275–282.

    Article  CAS  Google Scholar 

  • Menken S.B.J., Smit E. &den Nijs J.C.M. (1995): Genetical population structure in plants: gene flow between diploid sexual and triploid asexual dandelions (Taraxacum sectionRuderalia).Evolution 49: 1108–1118.

    Article  Google Scholar 

  • Meirmans P.G., Vlot E.C., den Nijs J.C.M. &Menken S.B.J. (2003): Spatial ecological and genetic structure of a mixed population of sexual diploid and apomicitic triploid dandelions.J. Evol. Biol. 16: 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Mogie M. &Ford H. (1988): Sexual and asexualTaraxacum species.Biol. J. Linn. Soc. 35: 155–168.

    Article  Google Scholar 

  • Morita T., Menken S.B.J. &Sterk A.A. (1990a): Hybridization between European and Asian dandelions (Taraxacum sectionRuderalia and sectionMongolica). 1. Crossability and breakdown of self-incompatibility.New Phytol. 114: 519–529.

    Article  Google Scholar 

  • Morita T., Sterk A.A., den Nijs J.C.M. (1990b): The significance of agamospermous triploid pollen donors in the sexual relationship between diploids and triploids inTaraxacum (Compositae).Pl. Spec. Biol. 5: 167–176.

    Article  Google Scholar 

  • Murín A. (1960): Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears.Stain Technol. 35: 351–353.

    PubMed  Google Scholar 

  • Richards A.J. (1970a): Hybridization inTaraxacum.New Phytol. 69: 1103–1121.

    Article  Google Scholar 

  • Richards A.J. (1970b): Eutriploid facultative agamospermy inTaraxacum.New Phytol. 69: 761–774.

    Article  Google Scholar 

  • Richards A.J. (1973): The origin ofTaraxacum agamospecies.Bot. J. Linn. Soc. 66: 189–211.

    Article  Google Scholar 

  • Richards A.J. (1997):Plant breeding systems. Ed. 2. Chapman & Hall, London, etc..

    Google Scholar 

  • Sorensen T. (1958): Sexual chromosome aberants in triploid apomictic Taraxaca.Bot. Tidsskr. 54: 1–22.

    Google Scholar 

  • Sterk A.A. (1987): Aspects of the population biology of sexual dandelions in the Netherlands. In:Huiskes A.H.L., Bloom C.W.P. M. &Rozema J. (eds.),Vegetation between land and sea, Junk Publishers, Dordrecht, pp. 284–291.

    Google Scholar 

  • Tas I.C.Q. &van Dijk P.J. (1999): Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis.Heredity 83: 707–714.

    Article  PubMed  Google Scholar 

  • Tchermak-Woess E. (1949): DiploidesTaraxacum vulgare in Wien und Niederösterrrieich.Oesterr. Bot. Z. 96: 56–63.

    Article  Google Scholar 

  • Uhlemann I., Kirschner J. &Štěpánek J. (2004): The genusTaraxacum (Asteraceae) in the southern Hemisphere. I. The sectionAntarcticaHandel-Mazzetti and notes on dandelions of Australasia.Folia Geobot. 39: 205–220.

    Article  Google Scholar 

  • van Baarlen P., de Jong J.H. &van Dijk P.J. (2002): Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids.Sex. Pl. Reprod. 15: 31–38.

    Article  Google Scholar 

  • van Dijk P.J., Tas I.C.Q., Falque M. &Bakx-Schotman T. (1999): Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis.Heredity 83: 715–721.

    Article  PubMed  Google Scholar 

  • Záveský L., Jarolímová V. &Štěpánek J. (2005): Nuclear DNA content variation within the genusTaraxacum (Asteraceae).Folia Geobot. 40: 91–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mártonfiová, L. Possible pathways of the gene flow inTaraxacum sect.Ruderalia . Folia Geobot 41, 183–201 (2006). https://doi.org/10.1007/BF02806478

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02806478

Keywords

Navigation