Skip to main content
Log in

A fibre bundle formulation of quantum geometry

Формулировка квантовой геометрии в виде семейства нитей

  • Published:
Il Nuovo Cimento A (1965-1970)

An Erratum to this article was published on 01 February 1986

Summary

Quantum geometries whose points are stochastic and serve as seats for quantum space-time excitons are formulated as fibre bundles over base spaces of mean values with a Minkowski or general relativistic structure. The fibres contain the proper wave functions of all exciton states in a given model. The notion of covariance and propagation in quantum space-times constituting such fibre bundles is investigated. Maxwell and Yang-Mills gauge degrees of freedom are introduced by appropriately enlarging the structure group, which in all cases contains phase-space representations of the Poincaré group corresponding to the exciton wave function sample space specific to a given model. It is shown that these formulations give rise in a natural manner to certain realizations of the relativistic canonical commutation relations in terms of covariant derivatives involving internal as well as external degrees of freedom of space-time excitons.

Riassunto

Si formulano geometrie quantiche, i cui punti sono stocastici e servono come siti degli eccitoni dello spazio-tempo quantistico, come fasci di fibre su spazi di base dei valori medi con struttura di Minkowski o relativistica generale. Le fibre contengono le funzioni d'onda proprie di tutti gli stati eccitonici in un dato modello. Si ricerca la nozione di covarianza e propagazione negli spazi-tempi quantici che costituiscono questi fasci di fibre. Si introducono gradi di libertà di gauge di Maxwell e Yang-Mills allargando opportunamente il gruppo di struttura, che in tutti i casi contiene le rappresentazioni dello spazio delle fasi del gruppo di Poincaré che corrisponde allo spazio campionario delle funzioni d'onda eccitoniche specifiche di un dato modello. Si mostra che queste formulazioni danno origine naturalmente a certe realizzazioni delle relazioni di commutazione canonica relativistiche in termini delle derivate covarianti che comprendono sia i gradi di libertà interni che quelli esterni degli eccitoni dello spazio-tempo.

Резюме

Формулируются квантовые геомстрии, точки которых являются стохастическими и служат как положения для квантовых пространственно-временных экситонов, в виде семейства нитей на базовых пространствах для средних величин со структурой Минковского или более общей релятивистской структурой. Нити содержат собственные волновые функции для всех экситонных состояний в заданной модели. Исследуются понятия ковариантности и распространения в квантовых пространстве-времени, определяемых такими семействами нитей. Вводятся калибровочные степени свободы Максвелла и Янга-Миллса, посредством расширения структурной группы, которая во всех случаях содержит представления фазового пространства группы Пуанкаре, соответствующей экситонной волновой функции. Показывается, что эти фомулировки приводят естественным образом к некоторым реализациям канонических коммутационных соотношений в терминах ковариантных производных, включая внутренние и внешние степени свободы пространственновременных экситонов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein:Ann. Phys. (N. Y.),17 891 (1905).

    Article  ADS  MATH  Google Scholar 

  2. A. Einstein: inReadings in the Philosophy of Science, edited byH. Feigle andM. Brodbeck (Appleton-Century-Crofts, New York, N. Y., 1953).

    Google Scholar 

  3. L. de Broglie:C. R. Acad. Sci. Paris,200, 361 (1935).

    MATH  Google Scholar 

  4. A. March:Naturwissenschaften,26, 649 (1938).

    Article  ADS  Google Scholar 

  5. M. Born:Proc. R. Soc. London, Ser. A.,165, 291 (1938).

    Article  ADS  Google Scholar 

  6. N. Rosen:Phys. Rev.,72, 298 (1947).

    Article  ADS  MATH  Google Scholar 

  7. A. S. Eddington:Fundamental Theory (Cambridge University Press, Cambridge, 1953).

    Google Scholar 

  8. K. Menger: inAlbert Einstein: Philosopher-Scientist, edited byP. A. Schilpp (Library of Living Philosophers, Evanston, Ill., 1949).

    Google Scholar 

  9. B. Schweizer andA. Sklar:Probability Metric Spaces, (North-Holland, New York, N. Y., 1983).

    Google Scholar 

  10. D. I. Blokhintsev:Sov. J. Part. Nucl. 5, 243 (1975).

    Google Scholar 

  11. E. Prugovečki:Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1984).

    Book  MATH  Google Scholar 

  12. N. Rosen:Ann. Phys. (N. Y.),19, 165 (1962).

    Article  ADS  MATH  Google Scholar 

  13. S. T. Ali:Riv. Nuovo Cimento (1985), in press.

  14. E. Prugovečki:Found. Phys.,14, 1147 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  15. B. S. DeWitt: inGravitation: An Introduction to Current Research, edited byL. Witten (Wiley, New York, N. Y., 1962).

    Google Scholar 

  16. C. A. Mead:Phys. Rev. B,135, 849 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. C. Hegerfeldt andS. N. M. Ruijsenaars:Phys. Rev. D,22, 377 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Araki andM. Yanase:Phys. Rev.,120, 622 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Busch: inRecent Developments in Quantum Logic, edited byP. Mittelstaedt andE. W. Stochow (Bibliographisches Institut, Mannheim, 1985), p. 81.

    Google Scholar 

  20. P. Busch:Momentum conservation forbids sharp localization, to appear inJ. Phys. A: Math. Gen.

  21. A. Landé:Phys. Rev.,56, 482, 486 (1939).

    Article  ADS  Google Scholar 

  22. M. Born:Proc. R. Soc. Edinburgh,59, 219 (1939).

    Google Scholar 

  23. W. Heisenberg:Phys. Today,29(3), 32 (1976).

    Article  MathSciNet  Google Scholar 

  24. T. Takabayashi:Prog. Theor. Phys. Suppl.,67, 1 (1979).

    Article  ADS  Google Scholar 

  25. H. Yukawa:Phys. Rev.,91, 416 (1953).

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Katayama, I. Umemura andH. Yukawa:Prog. Theor. Phys. Suppl.,41, 22 (1968).

    Article  ADS  Google Scholar 

  27. J. A. Wheeler:Geometrodynamics (Academic Press, New York, N. Y., 1962).

    Google Scholar 

  28. C. Nash andS. Sen:Topology and Geometry for Physicists (Academic Press, London, 1983).

    Google Scholar 

  29. M. Born:Rev. Mod. Phys.,21, 463 (1949).

    Article  ADS  Google Scholar 

  30. E. R. Caianiello:Nuovo Cimento B,59, 350 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  31. E. R. Caianiello, S. De Filippo andG. Vilasi:Lett. Nuovo Cimento,33, 555 (1982).

    Article  Google Scholar 

  32. E. R. Caianiello, G. Marmo andG. Scarpetta:Lett. Nuovo Cimento,37, 361 (1983).

    Article  MathSciNet  Google Scholar 

  33. J. A. Brooke andE. Prugovečki:Nuovo Cimento A,79 237 (1984).

    Article  ADS  Google Scholar 

  34. J. A. Brooke andW. Guz:Nuovo Cimento A,78, 221 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Banai andB. Lukacs:Lett. Nuovo Cimentos,36, 533 (1983).

    Article  Google Scholar 

  36. M. Banai:Int. J. Theor. Phys.,23, 1043 (1984).

    Article  MathSciNet  Google Scholar 

  37. D. Han, M. E. Noz, Y. S. Kim andD. Son:Phys. Rev. D,27, 3032 (1983).

    Article  ADS  Google Scholar 

  38. S. T. Ali andE. Prugovečki:Harmonic analysis and systems of covariance for phase space representations of the Poincaré group, to appear inActa Appl. Math.

  39. J. A. Brooke andW. Guz:Nuovo Cimento A,78, 17 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  40. J. A. Brooke andE. Prugovečki:Nuovo Cimento A,89, 126 (1985).

    Article  ADS  MATH  Google Scholar 

  41. E. Prugovečki:Found. Phys.,12, 555 (1982).

    Article  ADS  Google Scholar 

  42. J. A. Brooke:Int. J. Theor. Phys.,23, 783 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Ehlers: inGeneral Relativity and Cosmology, edited byB. K. Sachs (Academic Press, New York, N. Y., 1971).

    Google Scholar 

  44. W. Guz:On the Dirac-like equation in phase space, University of Salerno preprint.

  45. A. P. Balachandran, G. Marmo, B.-S. Skagerstam andA. Stern:Gauge Symmetries and Fibre Bundles (Springer-Verlag, Berlin, 1983).

    MATH  Google Scholar 

  46. S. T. Ali:Harmonic analysis on phase space. I:Reproducing kernel Hilbert spaces, POVmeasures and systems of covariance, Concordia University preprint.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSERC Research Grant A5206

Traduzione a cura della Redazione.

Переведено редакцией.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02819308.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prugovečki, E. A fibre bundle formulation of quantum geometry. Nuov Cim A 89, 105–125 (1985). https://doi.org/10.1007/BF02804854

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804854

PACS. 12.90

Navigation