Skip to main content
Log in

Testing for community structure: A bayesian approach

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Variance deficit in richness is not reliable evidence for niche limitation. The main problem is the effect of limitation to individual plant module packing at small quadrat sizes, though environmental and historical patchiness can also confound the results unless patch models are used. More reliable approaches to community structure (assembly rules) are those that take into account the characters of the species—guild proportionality, texture convergence and limiting similarity test.

A informally Bayesian approach to community structure is advocated, accepting that some hypotheses have greater prior probability, such as module-packing limitations, but using all the evidence available to estimate the likelihood of all the ecological hypotheses. The problem of environmental patchiness can be largely overcome by patch models. These models also overcome the problem of spatial autocorrelation, because they are conservative in such situations. For guild proportionality analyses, the possibility of sampling bias is a particular problem; this should be borne in mind during sampling, and checks made for the possibility in analyses. In devising Monte Carlo tests for community structure, permutation tests (i.e. randomisation tests, using sampling without replacement) are theoretically and practically preferable to bootstrap tests (i.e. using sampling with replacement). The best test is the simplest one that incorporates the intended null model and uses the intended test statistic.

Experiments have intuitive appeal, but field experiments have several severe drawbacks, including the inevitability of artefacts, and insoluble problems of when to record. In practice, field experiments have told us surprisingly little about community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams P.A. (1984): Variability in resource consumption rates and the coexistence of competing species.—Theor. Populat. Biol. 25: 106–124.

    Article  Google Scholar 

  • Abrams P.A. (1990): Ecological vs evolutionary consequences of competition.—Oikos 57: 147–151.

    Article  Google Scholar 

  • Armbruster W.S. (1986): Reproductive interactions between sympatricDalechampia species: are natural assemblages “random” or organized?—Ecology 67: 522–533.

    Article  Google Scholar 

  • Armbruster W.S., Edwards M.E. &Debevec E.M. (1994): Floral character displacement generates assemblage structure of Western Australian triggerplants (Stylidium).—Ecology 75: 315–329.

    Article  Google Scholar 

  • Bycroft C.M., Nicolaou N., Smith B. &Wilson J.B. (1993). Community structure (niche limitation and guild proportionality) in relation to the effect of spatial scale, in aNothofagus forest sampled with a circular transet.—New Zealand J. Ecol. 17: 95–101.

    Google Scholar 

  • Cody M.L. (1989): Discussion: Structure and assembly of communities.—In:Roughgarden J., May R.M. &Levin S.A. [eds.]: Perspectives in ecological theory, Princeton University Press, Princeton, pp. 227–241.

    Google Scholar 

  • Dodd M.E., Silvertown J., McConway K., Potts J. &Crawley M.J. (1995). Community stability: a sixty-year record of trends and outbreaks in the occurrence of species in the Park Grass Experiment.—J. Ecol. 83: 277–285.

    Article  Google Scholar 

  • Dodd M.E., Silvertown J., McConway K., Potts J. &Crawley M.J. (1994): Stability in the plant communities of the Park Grass Experiment: the relationships between species richness, soil pH and biomass variability.—Philos. Trans. Roy. Soc. London, B 346: 185–193.

    Article  Google Scholar 

  • Fowler N.L. (1981): Competition and coexistence in a North Carolina grassland. II. The effects of the experimental removal of species.—J. Ecol. 69: 843–854.

    Article  Google Scholar 

  • Good P. (1994): Permutation tests: a practical guide to resampling methods for testing hypotheses.— Springer-Verlag, New York.

    Google Scholar 

  • Grubb P.J., Kelly D. &Mitchley J. (1982): The control of relative abundance in communities of herbaceous plants.—In:Newman E.I. [ed.]: The plant community as a working mechanism, Blackwell, Oxford, pp. 79–97.

    Google Scholar 

  • Gurevitch J. &Collins S.L. (1994): Experimental manipulation of natural plant communities.—Trends Ecol. Evol. 9: 94–98.

    Article  Google Scholar 

  • Hanksi I. &Zhang D.-Y. (1993): Migration, metapopulation dynamics and fugitive coexistence.—J. Theor. Biol. 163: 491–504.

    Article  Google Scholar 

  • Howson C. &Urbach P. (1989): Scientific reasoning: the Bayesian approach.—Open Court, La Salle, USA.

    Google Scholar 

  • Klimeš L., Jongepier J.W. &Jongepierová I. (1995): Variability in species richness and guild structure in two species-rich grasslands.—Folia Geobot. Phytotax. 30: 243–253.

    Google Scholar 

  • Lepš J. (1990): Can underlying mechanisms be deduced from observed patterns?—In;Krahulec F., Agnew A.D.G., Agnew S. &Willems J.H. [eds.]: Spatial processes in plant communities, SPB Academic, The Hague, pp. 1–11.

    Google Scholar 

  • Lepš J. (1995): Variance deficit is not reliable evidence for niche limitation.—Folia Geobot. Phytotax. 30: 455–459.

    Google Scholar 

  • MacArthur R.H. &Levins R. (1967): The limiting similarity, convergence, and divergence of coexisting species.—Amer. Naturalist 101: 377–385.

    Article  Google Scholar 

  • Manly B.F.J. (1991): Randomization and Monte Carlo methods in biology.—Chapman & Hall, London.

    Google Scholar 

  • Manly B.F.J. (1993): A review of computer intensive multivariate methods in ecology.—In:Patil G.P. &Rao C.R. [eds.]: Multivariate environmental statistics, Elsevier, Amsterdam, pp. 307–346.

    Google Scholar 

  • May R.M. &MacArthur R.H. (1972): Niche overlap as a function of environmental variability.—Proc. Natl. Acad. USA 69: 1109–1113.

    Article  CAS  Google Scholar 

  • McLellan A.J., Fitter A.H. &Law R. (1995): On decaying roots, mycorrhizal colonization and the design of removal experiments.—J. Ecol. 83: 225–230.

    Article  Google Scholar 

  • Mohler C.L. (1990): Co-occurrence of oak subgenera: implications for niche differentiation.—Bull. Torrey Bot. Club 117: 247–255.

    Article  Google Scholar 

  • Pacala S.W. &Tilman D. (1994): Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments.—Amer. Naturalist 143: 222–257.

    Article  Google Scholar 

  • Palmer M.W. &van der Maarel E. (1995): Variance in species richness, species association, and niche limitation.—Oikos: 73: 203–213.

    Article  Google Scholar 

  • Quinn J.F. &Dunham A.E. (1983): On hypothesis testing in ecology and evolution.—Amer. Naturalist 122: 602–617.

    Article  Google Scholar 

  • Rabotnov T.A. (1992): Javljaetsja li ob" em fizičeskoj sredy resursom dlja rastenij? (Is physical space a resource for plants?).—Bjull. Moskovsk. Obšč. Isp. Prir., Otd. Biol. 97(5): 81–82.

    Google Scholar 

  • Roughgarden J. (1983): Coevolution between competitors.—In:Futuyma D.J. &Slatkin M. [eds.]: Coevolution, Sinauer, Sunderland, USA, pp. 383–403.

    Google Scholar 

  • Roxburgh S.H., Watkins A.J. &Wilson J.B. (1993): Lawns have vertical stratification.—J. Veg. Sci. 4: 699–704.

    Article  Google Scholar 

  • Silvertown J. (1987): Ecological stability: a test case.—Amer. Naturalist 130: 807–810.

    Article  Google Scholar 

  • Simberloff D.S. (1983): Competition theory, hypothesis-testing, and other community ecological buzzwords.—Amer. Naturalist 122: 626–635.

    Article  Google Scholar 

  • Smith B., Moore S.H., Grove P.B., Harris N.S., Mann S. &Wilson J.B. (1994): Vegetation texture as an approach to community structure: community-level convergence in a New Zealand temperate rainforest.— New Zealand J. Ecol. 18: 41–50.

    Google Scholar 

  • Strong D.R., Jr,Szyska L.A. &Simberloff D.S. (1979): Tests of community-wide character displacement against null hypotheses.—Evolution 33: 897–913.

    Article  Google Scholar 

  • Tilman D., Dodd M.E., Silvertown J., Poulton P.R., Johnston A.E. &Crawley M.J. (1994): The Park Grass experiment: insights from the most long-term ecological study.—In:Leigh R.A. &Johnston A.E. [eds.]: Long-term experiments in agricultural and ecological sciences, CAB International, Wallingford, pp. 287–303.

    Google Scholar 

  • Watkins A.J. &Wilson J.B. (1992): Fine-scale community structure of lawns.—J. Ecol. 80: 15–24.

    Article  Google Scholar 

  • Wilson J.B. (1989): A null model of guild proportionality, applied to stratification of a New Zealand temperate rain forset.—Oecologia 80: 263–267.

    Google Scholar 

  • Wilson J.B. (1991): Does vegetation science exist?—J. Veg. Sci. 2: 289–290.

    Article  Google Scholar 

  • Wilson J.B. (1995): Variance in species richness, niche limitation, and vindication of patch models.—Oikos 73: 277–279.

    Article  Google Scholar 

  • Wilson J.B. &Roxburgh S.H. (1994): A demonstration of guid-based assembly rules for a plant community, and determination of intrinsic guilds.—Oikos 69: 267–276.

    Article  Google Scholar 

  • Wilson J.B. &Gitay H. (1995): Limitations to species coexistence: evidence for competition from field observations, using a patch model.—J. Veg. Sci. 6: 369–376.

    Article  Google Scholar 

  • Wilson J.B. &Watkins A.J. (1994): Guilds and assembly rules in lawn communities.—J. Veg. Sci. 5: 591–600.

    Article  Google Scholar 

  • Wilson J.B., Gitay H. &Agnew A.D.Q. (1987): Does niche limitation exist?—Funct. Ecol. 1: 391–397.

    Article  Google Scholar 

  • Wilson J.B., Roxburgh S.H. &Watkins A.J. (1992): Limitation to plant species coexistence at a point: a study in a New Zealand lawn. J. Veg. Sci. 3: 711–714.

    Article  Google Scholar 

  • Wilson J.B., Agnew A.D.Q. &Partridge T.R. (1994): Carrtexture in Britain and New Zealand: Convergence compared with a null model.—J. Veg. Sci. 5: 109–116.

    Article  Google Scholar 

  • Wilson J.B., Allen R.B. &Lee W.G. (1995): An assembly rule in the ground and herbaceous strata of a New Zealand rain forest.—Funct. Ecol. 9: 61–64.

    Article  Google Scholar 

  • Wilson J.B., Sykes M.T. & Peet R.K. (in press): Time and space in the community structure of a species-rich grassland.—J. Veg. Sci.

  • Zobel K. &Zobel M. (1988): A new null hypothesis for measuring the degree of plant community organization. —Vegetatio 75: 17–25.

    Article  Google Scholar 

  • Zobel K., Zobel M. &Peet R.K. (1993): Change in pattern diversity during secondary succession in Estonian forests.—J. Veg. Sci. 4: 489–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.B. Testing for community structure: A bayesian approach. Folia Geobot 30, 461–469 (1995). https://doi.org/10.1007/BF02803976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803976

Keywords

Navigation