Skip to main content
Log in

Sulfate reduction and porewater chemistry in a gulf coastJuncus roemerianus (Needlerush) marsh

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 2−4 m−2 d−1 in January 1995 to 117 mmol SO 2−4 m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 2−4 m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bradley, P. M. andJ. T. Morris. 1990 Influence of oxygen and sulfide concentrations on nitrogen uptake kinetics inSpartina alterniflora.Ecology 71:282–287.

    Article  CAS  Google Scholar 

  • Capone, D. G. andR. P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism.Limnology and Oceanography 4: 725–749.

    Google Scholar 

  • Christian, R. R., W. L. Bryant, andM. M. Brinson. 1990.Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod.Marine Ecology Progress Series 68:137–145.

    Article  Google Scholar 

  • Cline, J. D.. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters.Limnology and Oceanography 14: 454–458.

    CAS  Google Scholar 

  • De la Cruz, A. A. 1974. Primary productivity of coastal marshes in Mississippi.Gulf Research Reports 4:351–356.

    Google Scholar 

  • De la Cruz, A. A. andC. T. Hackney. 1977. Energy value, elemental composition, and productivity of belowground biomass of aJuncus tidal marsh.Ecology 58:1165–1170.

    Article  Google Scholar 

  • Eleuterius, L. N. 1975. The life history of the salt marsh rush,Juncus roemerianus.Bulletin Torrey Botanical Club 102:135–140.

    Article  Google Scholar 

  • Eleuterius, L. N.. 1976. The distribution ofJuncus roemerianus in the salt marshes of North America.Chesapeake Science 17: 289–292.

    Article  Google Scholar 

  • Fenchel, T., G. M. King, andT. H. Blackburn. 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 2nd edition. Academic Press, San Diego, California.

    Google Scholar 

  • Folk, R. L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas.

    Google Scholar 

  • Fossing, H. andB. B. Jørgensen. 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method.Biogeochemistry 8:205–222.

    Article  CAS  Google Scholar 

  • Foster, W. A.. 1968. Studies on the distribution and growth ofJuncus roemerianus in southeastern Bruswick County, in North Carolina. M.S. Thesis, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Gabriel, B. C. andA. A. De La Cruz. 1974. Species composition, standing stock and net primary production of a salt marsh community in Mississippi.Chesapeake Science 15:72–77.

    Article  Google Scholar 

  • Gallagher, J. L., R. J. Reimold, R. A. Linthurst, andW. J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation-export dynamics inSpartina alterniflora andJuncus roemerianus plant stands in a Georgia salt marsh.Ecology 61: 303–312.

    Article  Google Scholar 

  • Giblin, A. E.. 1988. Pyrite formation in marshes during early diagenesis.Geomicrobiology Journal 6:77–97.

    Article  CAS  Google Scholar 

  • Hackney, C. T. andO. P. Hackney. 1978. An improved, conceptually simple technique for estimating the productivity of marsh vascular flora.Gulf Research Reports 6:125–129.

    Google Scholar 

  • Hines, M., D. Bazylinski, J. B. Tugel, andW. B. Lyons. 1991. Anaerobic microbial biogeochemistry in sediments from two basins in the Gulf of Maine: Evidence for iron and manganese reduction.Estuarine, Coastal and Shelf Science 32:313–324.

    Article  CAS  Google Scholar 

  • Hines, M. E., W. L. Knollmeyer, andJ. B. Tugel. 1989. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh.Limnology and Oceanography 34: 578–590.

    CAS  Google Scholar 

  • Hopkinson, C. S., J. G. Gosselink, andR. T. Parrondo. 1980. Production of coastal Louisiana marsh plants calculated from phenometric techniques.Ecology 61:1091–1098.

    Article  Google Scholar 

  • Howarth, R. W.. 1978. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism.Science 203:49–51.

    Article  Google Scholar 

  • Howarth, R. W. andA. Giblin. 1983. Sulfate reduction in the salt marshes at Sapelo Island, Georgia.Limnology and Oceanography 28:70–82.

    CAS  Google Scholar 

  • Howarth, R. W. andJ. M. Teal. 1979. Sulfate reduction in a New England salt marsh.Limnology and Oceanography 24:999–1013.

    CAS  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andG. M. King. 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments.Limnology and Oceanography 29:1037–1051.

    CAS  Google Scholar 

  • Hsieh, Y. andC. Yang. 1997. Pyrite accumulation and sulfate depletion as affected by root distribution in aJuncus (needle rush) salt marsh.Estuaries 20:640–645.

    Article  CAS  Google Scholar 

  • King, G.. 1990. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments.FEMS Microbiology Ecology 73:131–138.

    Article  CAS  Google Scholar 

  • King, G. M.. 1983. Sulfate reduction in Georgia salt marsh soils: And evaluation of pyrite formation by use of 35-S and 55-Fe tracers.Limnology and Oceanography 28:987–995.

    CAS  Google Scholar 

  • King, G. M.. 1988. Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh.Limnology and Oceanography 33:376–390.

    CAS  Google Scholar 

  • King, G. M., M. J. Klug, R. G. Wiegert, andA. G. Chalmers. 1982. Relation of soil water movement and sulfide concentration toSpartina alterniflora production in a Georgia salt marsh.Science 218:61–64.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., C. M. Moore, K. L. Lowe, C. Meile, T. J. Dichristina, andP. Van Cappellen. 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA).Biogeochemistry 64:179–203.

    Article  CAS  Google Scholar 

  • Kostra, J. E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton, andE. Kristensen. 2002a. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments.Limnology and Oceanography 47:230–240.

    Article  Google Scholar 

  • Kostra, J. E. andG. W. Luther, III. 1994. Partitioning and speciation of solid phase iron in salt marsh sediments.Geochimica et Cosmochimica Acta 58:1701–1710.

    Article  Google Scholar 

  • Kostra, J. E., andG. W. Luther, III. 1995. Seasonal cycling of Fe in saltmarsh sediments.Biogeochemistry 29:159–181.

    Google Scholar 

  • Kostra, J. E., A. Roychoudhury, andP. Van Cappellen. 2002b. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments.Biogeochemistry 60:49–76.

    Article  Google Scholar 

  • Kruczynski, W. L., C. B. Subramanyam, andM. Drake. 1978. Studies on the plant community of a north Florida salt marsh. Part I. Primary production.Bulletin of Marine Science 28:316–334.

    Google Scholar 

  • Lewis, D. W.. 1984. Practical Sedimentology. Hutchenson Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Lord, C. J. andT. M. Church. 1983. The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization.Geochimica et Cosmochimica Acta 47:1381–1391.

    Article  CAS  Google Scholar 

  • Lovley, D. R.. 1987. Organic matter mineralization with reduction of ferric iron: A review.Geomicrobiology Journal 5:375–399.

    CAS  Google Scholar 

  • Luther, G. W. andT. M. Church. 1992. An overview of the environmental chemistry of sulphur in wetland system, p. 125–142.In R. W. Howarth, J. B. W. Stewart, and M. V. Ivanov (eds.) Sulphur Cycling on the Continents. John Wiley and Sons, New York.

    Google Scholar 

  • Luther, III,G. W., J. E. Kostka, T. M. Church, B. Sullzburger, andW. E. Stumm. 1992. Seasonal iron cycling in the salt-marsh sedimentary environments: Importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively.Marine Chemistry 40:81–103.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr. 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptations to anoxia.Science 214:439–441.

    Article  CAS  Google Scholar 

  • Milner, C. andR. E. Hughes. 1968. Methods for the Measurement of Primary Production of Grassland, 1st edition. Black-well Scientific Publishers, Oxford, U.K.

    Google Scholar 

  • Mitsch, W. andJ. Gosselink. 1993. Wetlands, 2nd edition. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Moeslund, L., B. Thamdrup, andB. B. Jørgensen. 1994 Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics.Biogcochemistry 27:129–152.

    CAS  Google Scholar 

  • Pomeroy, L. R. andR. G. Wiegert (eds.). 1981. The Ecology of a Salt Marsh, Ecological Studies, Volume 38. Springer-Verlag, New York.

    Google Scholar 

  • Schroeder, W. W. andW. J. Wiseman. 1986. Low-frequency shelf-estuarine exchange processes in Mobile Bay and other estuarine systems on the Northern Gulf of Mexico, p. 355–367.In D. A. Wolfe (eds.), Estuarine Variability. Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  • Sorensen, J.. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate.Applied and Environmental Microbiology 43:319–324.

    CAS  Google Scholar 

  • Srookey, L. L.. 1970. Ferrozine—A new spectrophotometric reagent for iron.Analytical Chemistry 42:779–781.

    Article  Google Scholar 

  • Stout, J. P.. 1978. An analysis of growth and productivity ofJuncus roemerianus Scheele andSpartina alterniflora Loisel in coastal Alabama. Ph.D. Dissertation, University of Alabama Tuscaloosa, Alabama.

    Google Scholar 

  • Stroud, L. M.. 1976. Net primary production of belowground material and carbohydrate patterns in two height forms ofSpartina alterniflora in two North Carolina marshes. Ph.D. Dissertation. North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Teal, J. andJ. Kanwisher. 1961. Gas exchange in a Georgia salt marsh.Limnology and Oceanography 6:388–399.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.

    Google Scholar 

  • Waits, E. D.. 1967. Net primary productivity of an irregularly flooded North Carolina salt marsh. Ph.D. Dissertation. North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Wetzel, R. G. 1983. Limnology, 2nd edition, Saunders, Philadelphia, Pennsylvania.

    Google Scholar 

  • Wiegert, R. G. andF. C. Evans. 1964. Primary production and the disappearance of dead vegetation of an old field in southeastern Michigan.Ecology 45:49–62.

    Article  Google Scholar 

  • Willams, R. B. andM. B. Murdoch. 1972. Compartmental analysis of the production ofJuncus roemerianus in a North Carolina salt marsh.Chesapeake Science 13:69–79.

    Article  Google Scholar 

Source of Unpublished Materials

  • Roden, E. Personal Communication. University of Alabama, Department of Biological Sciences, Tuscaloosa, Alabama 35487.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald P. Kiene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miley, G.A., Kiene, R.P. Sulfate reduction and porewater chemistry in a gulf coastJuncus roemerianus (Needlerush) marsh. Estuaries 27, 472–481 (2004). https://doi.org/10.1007/BF02803539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803539

Keywords

Navigation