Skip to main content
Log in

Stress response model for the tropical seagrassThalassia testudinum: The interactions of light, temperature, sedimentation, and geochemistry

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Our modeling objective was to better define the relationship between subtropical seagrass and potential water column and sediment stressors (light, organic and particle sedimentation, sediment nutrients, and the porewater sulfide system). The model was developed and optimized for sediments inThalassia testudinum seagrass beds of Lower Laguna Madre, Texas, U.S., and is composed of a plant submodel and a sediment diagenetic submodel. Simulations were developed for a natural stressor (harmful algal bloom,Aureoumbra lagunensis) and an anthropogenic, stressor (dredging event). The observed harmful algal bloom (HAB) was of limited duration and the simulations of that bloom showed no effect of the algal bloom on biomass trends but did suggest that sediment sulfides could inhibit growth if the bloom duration and intensity were greater. To examine this hypothesis we ran a simulation using data collected during a sustained 4-yr bloom in Upper Laguna Madre. Simulations suggested that light attenuation by the HAB could cause a small reduction inT. testudinum biomass, while input of organic matter from the bloom could promote development of a sediment geochemical environment toxic toT. testudinum leading to a major reduction in biomass. A 3-wk dredging event resulted in sedimentation of a layer of rich organic material and reduction of canopy light for a period of months. The simulations suggested that the seagrass could have recovered from the effects of temporary light reduction but residual effects of high sulfides in the sediments would make the region inhospitable for seagrasses for up to 2.5 yr. These modeling exercises illustrate that both natural and anthropogenic stressors can result in seagrass losses by radically altering the sedimentary geochemical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Berg, H. C. 1983. Random Walks in Biology. 1st edition. Princeton University Press Princeton, New Jersey.

    Google Scholar 

  • Bostrom, C., E. Bonsdorff, P. Kangas, andA. Norkko. 2002. Long-term changes of a brackish-water eelgrass (Zostera marina L.) community indicate effects of coastal eutrophication.Estuarine Coastal and Shelf Science 55:795–804.

    Article  Google Scholar 

  • Boudreau, B. P. 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments.Computers and Geosciences 22:479–496.

    Article  CAS  Google Scholar 

  • Brandt, L. A. andE. W. Koch. 2003. Periphyton as a UV-B filter on seagrass leaves: A result of different transmittance in the UV-B and PAR ranges.Aquatic Botany 76:317–327.

    Article  Google Scholar 

  • Brown, C. A. 1997. Environmental monitoring of dredging and processes in Lower Laguna Madre, Texas: Data report, September, 1994, May, 1997. Conrad Blucher Institute, Texas A&M University, Corpus Christi, Texas.

    Google Scholar 

  • Burd, A. B. 2003. Seagrass models, p. 11–161.In K. A. Dunton. A. Burd, L. Cifuentes, P. M. Eldridge, and J. W. Morse (eds.), Effects of Dredge Deposits on Seagrasses: An Integrative Model for Laguna Madre. Volume 2 Findings, U. S. Army Corps of Engineers, Galveston, District, Galveston, Texas.

    Google Scholar 

  • Burd, A. B. andK. H. Dunton. 2001. Field verification of a light-driven model of biomass changes in the seagrassHalodule wrightii.Marine Ecology Progress Series 209:85–98.

    Article  Google Scholar 

  • Burd, A. B. andP. M. Eldridge. 2003. Model verification, p. V1-V24.In K. A. Dunton, A. Burd, L. Cifuentes, P. M. Eldridge, and J. W. Morse (eds.), Effects of Dredge Deposits on Seagrasses: An Integrative Model for Laguna Madre. Volume 2 Findings U.S. Army Corps of Engineers, Galveston District, Galveston, Texas.

    Google Scholar 

  • Buskey, E. J. andC. J. Hyatt. 1995. Effects of the Texas “brown tide” alga on planktonic grazers.Marine Ecology Progress Series 126:285–292.

    Article  Google Scholar 

  • Buskey, E. J., P. A. Montagna, A. F. Amos, andT. E. Whitledge. 1997. The initiation of the Texas brown tide algal bloom: Disruption of grazer populations as a contributing factor.Limnology and Oceanography 42:1215–1222.

    Google Scholar 

  • Caffrey, J. M. andW. M. Kemp. 1991. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release inPotamogeton perfoliatus L. andZostera marina L.Aquatic Botany 40:109–128.

    Article  Google Scholar 

  • Carlson, P. R., L. A. Tarbro, andT. R. Barber. 1994. Relationship of sediment sulfide to mortality ofThalassia testudinum in Florida Bay.Bulletin Marine Science 54:733–746.

    Google Scholar 

  • DeYoe, H. R. andC. A. Suttle. 1994. The inability of the Texas “Brown tide” alga to use nitrate and the role of nitrogen in the initiation of a persistent bloom or this organism.Journal of Phycology 30:800–806.

    Article  Google Scholar 

  • Drake, L., F. C. Dobbs, andR. C. Zimmerman. 2003 Effects of epiphyte load on optical properties and photosynthetic potential of the seagrassesThalassia testudinum. Banks ex Konig andZostera marina L.Limnology and Oceanography 48:456–463.

    Google Scholar 

  • Dunton, K. H. 1994. Seasonal growth and biomass of the subtropical seagrassHalodule wrightii in relation of continuous measurements of underwater irradiance.Marine Biology 120: 479–489.

    Article  Google Scholar 

  • Dunton, K. H., A. Burd, L. Cifuentes, P. M. Eldridge, andJ. W. Morse. 2003. The effect of dredge deposits on the distribution and productivity of seagrasses: An integrative model for Laguna Madre. U.S. Army Corps of Engineers, Galveston District, Galveston, Texas.

    Google Scholar 

  • Eldridge, P. M. andJ. E. Kaldy. 2003. Carbon and nitrogen allocation model for the seagrassThalassia testudinum in Lower Laguna Madre, p. II-2–II-21.In K. H. Dunton, A., Burd, L. Cifuentes, P. M. Eldridge, and J. W. Morse (eds.), The Effect of Dredge Deposits on the Distribution and Productivity of Seagrasses: An Integrative Model for Laguna Madre. U.S. Army Corps of Engineer, Galveston District, Galveston, Texas.

    Google Scholar 

  • Eldridge, P. M. andJ. W. Morse. 2000. Adiagenetic model for sediment-seagrass interactions.Marine Chemistry 70:89–103.

    Article  Google Scholar 

  • Greve, T. M., J. Borum, andO. Pedersen. 2003. Meristematic oxygen variability in eelgrass (Zostera marina).Limnology and Oceanography 48:210–216.

    Google Scholar 

  • Haney, J. D., andG. A. Jackson. 1996. Modeling phytoplankton growth rates.Journal of Plankton Research 18:63–85.

    Article  Google Scholar 

  • Hemminga, M. A. andC. M. Duarte. 2000. Seagrass Ecology. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Hebert, A. B. andJ. W. Morse 2003. Microscale effects of light on H2S and Fe2+ in vegetated (Zostera marina) sediments.Marine Chemistry 81:1–9.

    Article  CAS  Google Scholar 

  • Herzka, S. Z. andK. H. Dunton. 1997. Seasonal photosynthetic patterns of the seagrassThalassia testudinum in the western Gulf of Mexico.Marine Ecology Progress Series 152:103–117.

    Article  Google Scholar 

  • Herzka, S. Z., andK. H. Dunton. 1998. Light and carbon balance in the seagrassThalassia testudinum: Evaluation of current production models.Marine Biology 132:711–721.

    Article  Google Scholar 

  • Kaldy, J. E. andK. H. Dunton. 1999. Ontogenetic photosynthetic changes, dispersal and survival ofThalassia testudinum (turtle grass) seedlings in a sub-tropical lagoon.Journal of Experimental Marine Biology and Ecology 240:193–212.

    Article  CAS  Google Scholar 

  • Kaldy, J. E. andK. H. Dunton. 2000. Above-and below-ground production, biomass and reproductive ecology ofThalassia testudinum (turtle grass) in a subtropical coastal lagoon.Marine Ecology Progress Series 193:271–283.

    Article  CAS  Google Scholar 

  • Kaldy, J. E., K. H. Dunton, J. L. Kowlski, andK. S. Lee. 2004. Factors controlling seagrass revegetation onto dredged material deposits: A case study in lower Laguna Madre, Texas.Journal of Coastal Research 20:292–300.

    Article  Google Scholar 

  • Kaldy, J. E., C. P. Onuf, P. M. Eldridge, andL. A. Cifuentes. 2002. Carbon budget for a subtropical seagrass dominated coastal lagoon: How important are seagrasses to total ecosystem net primary production.Estuaries 25:528–539.

    Article  CAS  Google Scholar 

  • Koch, E. W., 2001. Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements.Estuaries 24:1–17.

    Article  Google Scholar 

  • Kraemer, G. P., andR. S. Alberte. 1993. Age-related patterns of metabolism and biomass in subterranean tissues ofZastera marina (eelgrass).Marine Ecology Progress Series 95:193–203.

    Article  Google Scholar 

  • Kristensen, E. andT. H. Blackburn. 1987. The fate of organic carbon and nitrogen in experimental marine sediments: Influences of bioturbation and anoxia.Journal Marine Research 45:231–257.

    CAS  Google Scholar 

  • Lee, K. S. andK. H. Dunton. 1999. Inorganic nitrogen acquisition in the seagrassThalassia testudinum: Development of whole-plant nitrogen budget.Limnology and Oceanography 44:1204–1215.

    Article  Google Scholar 

  • Lee, K. S., andK. H. Dunton. 2000. Diurnal changes in pore water sulfide concentrations in the seagrassThalassia testudinum beds: The effects of seagrasses on sulfide dynamics.Journal Experimental Marine Biology and Ecology 255:201–214.

    Article  CAS  Google Scholar 

  • Lovley, D. R., andE. J. Phillips. 1989. Requirements for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments.Applied Environmental Microbiology 54:3234–3236.

    Google Scholar 

  • Martin, W. R., andG. T. Banta. 1992. The measurement of sediment irrigation rates: A comparison of the Br-tracer and222Rn/226Ra disequibibrium techniques.Journal of Marine Research 50:125–154.

    Article  Google Scholar 

  • Mattila, J., G. Chaplin, M. R. Eilers, K. L. Heck, J. P. O'Neal, andJ. F. Valentine. 1999. Spatial and diurnal distribution of invertebrate and fish fauna of aZostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA).Journal Sea Research 41:321–332.

    Article  Google Scholar 

  • Morse, J. W.. 2003. Sediment geochemistry, p. VII-1–VII-51.In K. H. Dunton, A. Burd, L. Cifuentes, P. M. Eldrige, and J. W. Morse (eds.), The Effect of Dredge Deposits on the Distribution and Productivity of Seagrasses: An Integrative Model for Laguna Madra. U.S. Army Corps of Engineers, Galveston District, Galveston, Texas.

    Google Scholar 

  • Neame, K. D. andT. G. Richards. 1972. Elementary Kinetics of Membrane Carrier Transport, 1st edition. Blackwell Scientific, London.

    Google Scholar 

  • Onuf, C. P.. 1996. Seagrass responses to long-term light reduction by brown tide in upper Laguna Madre, TX: Distribution and biomass patterns.Marine Ecology Progress Series 138:219–231.

    Article  Google Scholar 

  • Peterson, D. J. andK. L. Heck. 2001. Positive interactions between suspension-feeding bivalves and seagrass—A facultative mutualism.Marine Ecology Progress Series 213:143–155.

    Article  Google Scholar 

  • Postma, D., andR. Jakobsen. 1996. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface.Geochimica et Cosmochimica Acta 60:3169–3175.

    Article  Google Scholar 

  • Pulich, W. M.. 1989. Effects of rhizosphere macronutrients and sulfide levels on the growth physiology ofHalodule wrightii Aschers. andRuppia maritima Aschers. L. sensu lato.Journal Experimental Marine Biology and Ecology 127:69–80.

    Article  CAS  Google Scholar 

  • Quammen, M. L. andC. P. Onuf. 1993. Laguna Madre: Seagrass changes continue decades after salinity reductionEstuaries 16:302–310.

    Article  Google Scholar 

  • Rowe, G. T., M. E. C. Kaegi, J. W. Morse, G. S. Boland, andE. G. E. Briones. 2002. Sediment community metabolism associated with continental shelf hypoxia, Northern Gulf of Mexico.Estuaries 25:1097–1106.

    Article  CAS  Google Scholar 

  • Short, F. T. andS. Wyllie-Echevarria. 1996. Nature of human-induced distributions of seagrass.Environmental Conservation 23:17–27.

    Article  Google Scholar 

  • Talling, J. F.. 1957. A new model for leaf photosynthesis incorporating gradients of light environment and the photosynthetic properties of chloroplasts within a leaf.Annals Botany 56:489–499.

    Google Scholar 

  • Thayer, G. W., W. J. Kenworthy, and M. S. Fonseca. 1984. The ecology of eelgrass meadows of, the Atlantic coast: A community profile. U.S. Fish Wildlife Service, FWS/OBS-84/02. Washington, D.C.

  • Van Cappellen, P. andY. Wang. 1996. Cycling of iron and manganese in surface sediments: A general theory for the couplied transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese.American Journal of Science 296:197–242.

    Article  Google Scholar 

  • Van Katwijk, M. M., L. H. T. Vergeer, G. H. W. Schmitz, andJ. G. M. Roelofs. 1997. Ammonium toxicity in eelgrassZostera marina.Marine Ecology Progress Series 157:159–173.

    Article  Google Scholar 

  • Werster, P. J., A. A. Rowden, andM. J. Attrill. 1998. Effect of shoot density on the infaunal macro-invertebrate community within aZostera marina seagrass bed.Estuarine Coastal and Shelf Science 47:351–357.

    Article  Google Scholar 

  • Whitledge, T. E., D. A. Stockwell, E. J. Buskey, K. H. Dunton, G. J. Holt, S. A. Holt, andP. A. Montagna. 1999. Persistent brown tide bloom in Laguna Madre, Texas, p. 338–359.In H. H. Kumpf, K. Steidinger, and K. Sherman (eds.), The Gulf of Mexico Large Marine Ecosystems. Blackwell Scientific, Malden, Massachusetts.

    Google Scholar 

  • Wiegert, R. G., andR. L. Wetzel. 1979. Simulation experiments with a 14-compartment salt marsh model, p. 7–39In R. F. Dame (ed.), Marsh-estuarine Systems Simulation. University of South Carolina, Columbia, South Carolina.

    Google Scholar 

  • Ziegler, S. andR. Benner. 1998. Ecosystem metabolism in a subtropical seagrass-dominated lagoon.Marine Ecology Progress Series 173:1–12.

    Article  Google Scholar 

  • Ziegler, S. andR. Benner. 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon.Marine Ecology Progress Series 180:149–160.

    Article  Google Scholar 

  • Zimmerman, R. C., J. L. Reguzzoni, andR. S. Alberte. 1995. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival.Aquatic Botany 51:67–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Eldridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldridge, P.M., Kaldy, J.E. & Burd, A.B. Stress response model for the tropical seagrassThalassia testudinum: The interactions of light, temperature, sedimentation, and geochemistry. Estuaries 27, 923–937 (2004). https://doi.org/10.1007/BF02803419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803419

Keywords

Navigation