Skip to main content
Log in

Dendritic growth during directional solidification of hypoeutectic Fe-C-Si alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The liquid decanting technique has been used to study the morphology of dendrites in directionally solidified Fe-3.08 pct C-2.01 pct Si alloy. The experimental results indicated that the morphology of primary dendrites in the Fe-C-Si system is very similar to those obtained in some transparent metal model systems and in some other metal systems. In order to study the morphological transition between cellular and dendritic growth, directionally solidified samples were quenched in cold water at various stages of solidification and the morphology was examined on the polished and etched surface. It has been found that when the growth velocity decreased from 326.6 to 0.8 μn/s, the average dendrite tip radius increased from 1.12 to 33.1 μm. At a growth velocity of about 0.65 μm/s, a transition from dendritic to cellular growth occurred. Models for dendritic growth proposed by various investigators have been briefly reviewed and compared with the present experimental results. Significant disagreements were found for some of the available theoretical models. Possible explanations have been given for these disagreements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Tsherhoff:On the Structure of Cast-Steel Ingots, Proc. Institute of Mechanical Engineers, American Society of Mechanical Engineers, New York, NY, 1880, p. 152.

    Google Scholar 

  2. H. Carpenter and J.M. Robertson:Metals, Oxford University Press, 1939, vol. 1.

  3. L. Northcott:J. Inst. Met., 1946, no. 72, pp. 283–91.

  4. G.R. Kotler, K.W. Casey, and G.S. Cole:Metall. Trans., 1972, vol. 3, pp. 723–26.

    Article  CAS  Google Scholar 

  5. Mary H. Johnston and Carolyn S. Griner:Metall. Trans. A, 1977, vol. 8A, pp. 77–82.

    CAS  Google Scholar 

  6. M.E. Glicksman, R.J. Schaefer, and J.D. Ayers:Metall. Trans. A, 1976, vol. 7A, pp. 1747–59.

    CAS  Google Scholar 

  7. S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 701–15.

    Article  CAS  Google Scholar 

  8. S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 717–34.

    Article  CAS  Google Scholar 

  9. K. Somboonsuk, J.T. Mason, and R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 967–75.

    CAS  Google Scholar 

  10. M.A. Chopra, M.E. Glicksman, and N.B. Singh:Metall. Trans. A, 1988, vol. 19A, pp. 3087–96.

    CAS  Google Scholar 

  11. H. Esaka and W. Kurz:J. Cryst. Growth, 1985, no. 72, pp. 578–84.

  12. C. D. Statham and C.R. Kotier:J. Cryst. Growth, 1971, no. 10, pp. 115–16.

  13. J. Dejace, R. Matera, and G. Piatti:J. Mater. Sci., 1973, no. 8, Letter, pp.754–56.

  14. A. Rosenberg and W.A. Tiller:Acta Metall., 1957, no. 5, pp. 565–73.

  15. S. O’Hara:Acta Metall., 1967, vol. 15, pp. 231–36.

    Article  CAS  Google Scholar 

  16. M.E. Gicksman and R.J. Schaefer:Acta Metall., 1966, vol. 14, pp. 1126–29.

    Article  Google Scholar 

  17. F.A. Schmidt, J.T. Mason, and R. Trivedi:Metallography, 1985, no. 18, pp. 35–40.

  18. Tatsumasa Kobayashi, Nozomu Kawabe, and Toru Imuca:Jpn. J. Appl. Phys., 1987, vol. 26 (11), pp. 1823–29.

    Article  CAS  Google Scholar 

  19. J.W. Rutter and B. Chalmers:Can. J. Phys., 1953, vol. 31, pp. 15–39.

    CAS  Google Scholar 

  20. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1963, no. 34, pp. 323–29.

  21. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, no. 35, p. 444.

  22. G. Horvay and J.W. Cahn:Acta Metall., 1961, vol. 9, pp. 695–705.

    Article  CAS  Google Scholar 

  23. R. Trivedi:Acta Metall., 1970, vol. 18, pp. 278–96.

    Google Scholar 

  24. M.H. Burden and J.D. Hunt:J. Cryst. Growth, 1974, no. 22, pp. 109–16.

  25. J.S. Langer and H. Muller-Krumbhaar:Ada Metall., 1978, vol. 26, pp. 1681–87.

    Article  CAS  Google Scholar 

  26. J.S. Langer and H. Muller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1689–95.

    Article  CAS  Google Scholar 

  27. H. Muller-Krumbhaar and J.S. Langer:Acta Metall., 1978, vol. 26, pp. 1697–1708.

    Article  Google Scholar 

  28. M. Hillert:Fundamentals of Aligned Growth, Keynote Lecture at Conf. on In Situ Composites 3, J.L. Walter, M.F. Gigliotti, B.F. Oliver, and H. Bibring eds., Ginn Custom Publishers, Boston, MA, 1978.

    Google Scholar 

  29. R. Trivedi:J. Cryst. Growth, 1980, no. 49, pp. 219–32.

  30. V. Laxmanan:Acta Metall., 1985, vol. 33 (6), pp. 1023–35.

    Article  CAS  Google Scholar 

  31. V. Laxmanan:Acta Metall., 1985, vol. 33 (6), pp. 1037–49.

    Article  CAS  Google Scholar 

  32. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  33. G.P. Ivantsov:Dokl. Akad. Nauk SSSR, 1947, no. 58, p. 567.

  34. V. Laxmanan:J. Cryst. Growth, 1986, no. 75, pp. 573–90.

  35. J.D. Hunt:Acta Metall. Mater., 1990, vol. 38 (3), 1990, pp. 411–18.

    Article  Google Scholar 

  36. D.M. Stefanescu: inMetals Handbook, 9th Ed.Vol. 15, Casting, ASM INTERNATIONAL, Metals Park, OH, 1988, p. 61.

    Google Scholar 

  37. W. Kurz and J.D. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, p. 205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, H., Stefanescu, D.M. Dendritic growth during directional solidification of hypoeutectic Fe-C-Si alloys. Metall Trans A 23, 681–687 (1992). https://doi.org/10.1007/BF02801185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801185

Keywords

Navigation