Skip to main content

Advertisement

Log in

Effects of Melt Superheating on the Microstructure and Tensile Properties of a Ternary Al-15 Wt Pct Si-1.5 Wt Pct Mg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Unsteady solidified microstructures of the Al-15 wt pct Si-1.5 wt pct Mg alloy under two degrees of melt superheating are examined: 4 and 21 pct above the alloy liquidus temperature. The dendritic array and the eutectic mixture have been investigated, which are affected not only by the solidification kinetics but also by the melt superheating. The directional solidification experiments permitted that aligned Al-rich dendrites could be formed for both high- and low-melt superheatings. These dendrites appear as ‘islands’ isolated from each other and dispersed within the α-Al+Si+Mg2Si eutectic matrix. Such configuration arises in samples under the entire range of examined cooling rates, i.e., from 0.5 to 50 K/s. Directionally solidified samples having different α-Al dendrite interphase spacings have been characterized and subjected to tensile tests. Such microstructural spacings translate the effectiveness in blocking the dislocations motion during loading, which is promoted mainly by the dendritic/eutectic boundaries. This mechanism is especially operative since the applied tensile load is perpendicular to the dendritic growth path. As such, the evolution of tensile properties as a function of these spacings was assessed. Both elongation (δ) and the ultimate strength (σu) are enhanced nearly by 40 pct due to the reduction in the dendrite interphase spacing. The highest properties (σu: ~ 310 MPa and δ: ~ 7 pct) are associated with a microstructure formed by aligned dendrites with 70 μm in spacing embedded in a eutectic mixture. Three factors appear to contribute to the higher strength values observed for the alloy processed under lower-melt superheating, i.e., higher fraction of dendrites, solid solution strengthening of Mg in α-Al, and finer eutectic Si spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1] P. Pandey, S. Kashyap, CS. Tiwary, K Chattopadhyay: Metall Mater Trans A, 2017, vol. 48, pp. 5940-5950.

    Article  Google Scholar 

  2. J.W. Bray: ASM Metals Handbook, 10th ed., ASM International, Ohio, 1976

    Google Scholar 

  3. V.S. Zolotorevsky, N.A Belov, M.V. Glazoff: Casting Aluminum Alloys, vol. 12, Elsevier, Amsterdam, 2007.

    Google Scholar 

  4. [4] R.V. Reyes, TS Bello, R Kakitani, TA Costa, A Garcia, N Cheung, JE Spinelli: Mater Sci Eng A, 2017, vol. 685, pp. 235-243.

    Article  Google Scholar 

  5. [5] M. Tebib, F Ajersch, AM Samuel, X-G Chen: Metall Mater Trans, 2013, vol. 44, pp. 4282-4295.

    Article  Google Scholar 

  6. [6] K Matsuura, M Kudoh, H Kinoshita: Mater Chem Phys, 2003, vol. 81, pp. 393-395.

    Article  Google Scholar 

  7. [7] L Lasa, JM Rodriguez-Ibabe: Mater Sci Eng A, 2003, vol. 363, pp. 193-202.

    Article  Google Scholar 

  8. [8] E. Sjölander, S.Seifeddine: J. Mater. Process. Technol., 2010, vol. 210, pp. 1249-1259.

    Article  Google Scholar 

  9. D.L. Zhang, L.H. Zheng, D.H. Stjohn: J. Light Met., 2002, vol. 2, pp. 27-36.

    Article  Google Scholar 

  10. [10] L.G. Hou, H. Cui, Y.H. Cai, J.S. Zhang: Mater. Sci. Eng. A, 2009, vol. 527, pp. 85-92.

    Article  Google Scholar 

  11. [11] E.R. Wang, X.D. Hui, G.L. Chen: Mater. Des., 2011, vol. 32, pp. 4333-4340.

    Article  Google Scholar 

  12. A. Mandal, M.M. Makhlouf: Improving Aluminum Casting Alloy and Process Competitiveness, Report no. 07-02, ACRC, Durango, 2007.

  13. A. Mandal, M.M. Makhlouf: Proceedings of 113th TMS Annual Meeting, San Francisco, 2009, pp. 57-62.

  14. [14] A Mandal, MM Makhlouf: Int J Cast Metal Res, 2010, vol. 23, pp. 303-309.

    Article  Google Scholar 

  15. [15] A Hekmat-Ardakan, F Ajersch: J Mater Process Tech, 2010, vol. 210, pp. 767-775.

    Article  Google Scholar 

  16. [16] Y. Wu, H. Liaon, K. Zhou: Mater. Sci. Eng. A, 2014, vol. 602, pp. 41-48.

    Article  Google Scholar 

  17. [17] A. Niklas, A. Bakedano, S. Orden, M. da Silva, E. Nogués, A.I. Fernández-Calvo: Materials Today: Proceedings, 2015, vol. 2, pp. 4931-4938.

    Article  Google Scholar 

  18. [18] S. Seifeddine, S. Johansson, I.L. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385-390.

    Article  Google Scholar 

  19. [19] PR Goulart, WR Osório, JE Spinelli, A Garcia: Mater Manuf Process, 2007, vol. 22, pp. 328-332.

    Article  Google Scholar 

  20. [20] PR Goulart, JE Spinelli, WR Osorio, A Garcia: Mater. Sci. Eng. A, 2006, vol. 421, pp. 245-253.

    Article  Google Scholar 

  21. E. Ghassemali, M. Riestra, T. Bogdanoff, B.S. Kumar, S. Seifeddine: International Conference on the Technology of Plasticity, ICTP, Cambridge, 2017, pp. 17–22.

  22. [22] J Zhang, Z Fan, YQ Wang, BL Zhou: Mater. Sci. Eng. A, 2000, vol. 281, pp.104-122.

    Article  Google Scholar 

  23. [23] QC Jiang, HY Wang, Y Wang, BX Ma, JG Wang: Mater. Sci. Eng. A, 2005, vol. 392, pp. 130-135.

    Article  Google Scholar 

  24. [24] R Hadian, M Emamy, N Varahram, N Nemati: Mater. Sci. Eng. A, 2008, vol. 490, pp. 250-257.

    Article  Google Scholar 

  25. [25] QD Qin, WX Li, KW Zhou, SL Qiu, YG Zhao, Mater. Sci. Eng. A, 2011, vol. 527, pp. 2253–2257.

    Article  Google Scholar 

  26. A. Kearney and E.L. Rooy: ASM Handbook - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook Committee, 1990, vol. 2, pp. 123–151.

  27. M. Okayasu, S. Takeuchi, T. Shiraishi: Int. J. Cast. Metal. Res., 2013, vol. 26, pp.105-113

    Article  Google Scholar 

  28. [28] Z. Qian, X. Liu, D. Zhao, G. Zhang: Mater. Lett., 2008, vol. 62, pp. 2150–2153.

    Article  Google Scholar 

  29. [29] M. V. Canté, J. E. Spinelli, N. Cheung, A. Garcia: Met. Mater. Int., 2010, vol. 16, pp. 39-49.

    Article  Google Scholar 

  30. [30] DM Rosa, JE Spinelli, IL Ferreira, A Garcia: J Alloys Compd, 2006, vol. 422, pp.227-238.

    Article  Google Scholar 

  31. [31] M. Gunduz, E. Çadirli: Mater. Sci. Eng. A, 2002, vol. 327, pp. 167-185.

    Article  Google Scholar 

  32. [32] E. Çadirli, U. Büyük, S. Engin, H. Kaya. J. Alloys Compd., 2017, vol. 694, pp. 471-479.

    Article  Google Scholar 

  33. [33] K.A. Jackson, J.D. Hunt: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129-1142.

    Google Scholar 

  34. [34] Y. Birol: Mater. Sci. Eng. A, 2013, vol. 559, pp. 394-400.

    Article  Google Scholar 

  35. [35] E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel: Mater. Des., 2014, vol. 56, pp. 468-479.

    Article  Google Scholar 

  36. E.L. Rooy: Aluminum and Aluminum Alloys, Casting 9th edition, vol. 15, Metals Handbook, ASM international, 1988, pp. 743–70.

  37. [37] G Zhang, J Zhang, B Li, W Cai: Prog Nat Sci-Mater, 2011, vol. 21, pp. 380-385.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: grant 2017/12741-6) and National Council for Scientific and Technological Development – CNPq for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Additional information

Manuscript submitted August 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakitani, R., Reyes, R.V., Garcia, A. et al. Effects of Melt Superheating on the Microstructure and Tensile Properties of a Ternary Al-15 Wt Pct Si-1.5 Wt Pct Mg Alloy. Metall Mater Trans A 50, 1308–1322 (2019). https://doi.org/10.1007/s11661-018-5058-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5058-5

Navigation