Skip to main content
Log in

Microscopic modeling of fundamental phase transformations in continuous castings of steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A model has been developed to describe the microscopic behavior of phase transformation of carbon steels in the range of cooling rate occurring in continuous casting. In the liquid-to solidphase transformation, this model simulates the phenomena of dendrite nucleation and growth during solidification. Both δ- and γ-dendrites are involved. The nucleation and growth model has been established on the basis of published experimental data and previous work. Also, a model of the peritectic transformation of carbon steels has been included. In the solid-to solidphase transformation, the model considers the δ→ γ, γ→ α, and γ→ α + Fe3C phase transformations. The δ→ γ and γ α phase transformations have been modeled by using the Johnson-Mehl equation, also known as the Avrami equation. For the pearlite transformation, a nucleation law, as well as the growth kinetics, has been established. Good agreement has been found between the prediction of the model and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jaffrey, I. Dover, and L. Hamilton:Met. Forum, 1984, vol. 7 (2), pp. 67–78.

    Google Scholar 

  2. W.T. Hogan: inMetallurgical Processes for the Year 2000 and Beyond, H.Y. Sohn and E.S. Geskin, eds., TMS, Warrendale, PA, 1988, pp. 647–54.

    Google Scholar 

  3. A.A. Tseng, J. Zou, H.P. Wang, and S.R.H. Hoole: inPolymers and Polymeric Composites, ASME, New York, NY, 1990, MD-vol. 19, pp. 135–59.

    Google Scholar 

  4. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986.

  5. M. Rappaz:Int. Mater. Rev., 1989, vol. 34 (3), pp. 93–123.

    CAS  Google Scholar 

  6. M. Rappaz, Ph. Thevoz, J. Zou, J.-P. Gabathuler, and H. Lindschied: inState of the Art of Computer Simulation of Casting and Solidification Processes, H. Fredriksson, ed., Strasbourg, France, June 1986, MRS, Symp. Proc, vol. C, pp. 277–84.

  7. M. Rappaz and Ph. Thévoz:Acta Metall., 1987, vol. 35, pp. 1487–97 and 2929–33.

    Article  CAS  Google Scholar 

  8. I. Dustin and W. Kurz:Z. Metallkd., 1986, vol. 77, pp. 265–73.

    CAS  Google Scholar 

  9. D.M. Stefanescu and C. Kanetkar: inComputer Simulation of Microstructure Evolution, D.J. Srolovitz, ed., TMS-AIME, Warrendale, PA, 1986, p. 171.

    Google Scholar 

  10. K.C. Su, I. Ohnaka, I. Yamauchi, and T. Fukusako: inThe Physical Metallurgy of Cast Iron, MRS Symp. Proc, 1985, vol. 34, pp. 181–89.

    CAS  Google Scholar 

  11. H. Fredriksson and IL. Svensson: inThe Physical Metallurgy of Cast Iron, MRS Symp. Proc, H. Fredriksson and M. Hillert, eds., North-Holland, Amsterdam, The Netherlands, 1985, vol. 34, pp. 273–84.

  12. M. Castro, J. Lacaze, and G. Lesoult:Erstarrung Metallischer Werkstoffe, P.R. Sahm, ed., DGM Informationsegesellschaft Verlag, Bad Nauheim, Germany, 1988, pp. 225–32.

    Google Scholar 

  13. J.D. Hunt:Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  CAS  Google Scholar 

  14. G.K. Sigworth:Am. Foundrymen’s Soc, 1987, vol. 95, pp. 73–78.

    CAS  Google Scholar 

  15. D. Apelian:46th Electric Furnace Conf. Proc, Iron & Steel Society of AIME, Warrendale, PA, 1988, pp. 375–89.

    Google Scholar 

  16. D.E. Talbot:Int. Metall. Rev., 1975, vol. 20, pp. 166–83.

    CAS  Google Scholar 

  17. D.R. Poirier:Metall. Trans. B, 1987, vol. 18B, pp. 245–56.

    Article  CAS  Google Scholar 

  18. K. Murakami, A. Shiraishi, and T. Okamoto:Acta Metall., 1984, vol. 32 (9), pp. 1423–28.

    Article  CAS  Google Scholar 

  19. K. Murakami and T. Okamoto:Acta Metall., 1984, vol. 32 (10), pp. 1741–44.

    Google Scholar 

  20. M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  21. T. Takahashi:U.S.-Japan Cooperative Science Program Seminar on Solidification Processing, Dedham, MA, May 1983, pp. 45–60.

  22. J. Zou, K. Tynelius, D.K. Kim, S. Shivkumar, and D. Apelian:28th Annual Conf. of Metallurgists of CIM, CIM, Halifax, NS, Canada, 1989, pp. 87–99.

    Google Scholar 

  23. J. Campbell:The Solidification of Metals, ISI Report No. 110, 1967, pp. 18–26.

  24. K. Kubo and R.D. Pehlke:Metall. Trans. B, 1985, vol. 16B, pp. 359–66.

    Article  CAS  Google Scholar 

  25. Q.T. Fang and D.A. Granger:Am. Foundrymen’s Soc Trans., 1989, vol. 97, p. 989.

    Google Scholar 

  26. Q.T. Fang and D.A. Granger: Light Met., 1989, pp. 927–35.

  27. D.R. Poirier, K. Yeum, and A.L. Maples:Metall. Trans. A, 1987, vol. 18A, pp. 1979–87.

    CAS  Google Scholar 

  28. H. Fredriksson and T. Nylen:Met. Sci., 1982, vol. 16, pp. 283–94.

    Article  CAS  Google Scholar 

  29. D.H. St. John:Acta Metall., 1990, vol. 38 (4), pp. 631–36.

    Article  CAS  Google Scholar 

  30. D.H. St. John and L.M. Hogan:Acta Metall., 1977, vol. 25, pp. 77–81.

    Article  CAS  Google Scholar 

  31. D.H. St. John and L.M. Hogan:Acta Metall., 1987, vol. 35, pp. 171–74.

    Article  CAS  Google Scholar 

  32. A.P. Titchener and J.A. Spittle:Acta Metall., 1975, vol. 23, pp. 497–502.

    Article  CAS  Google Scholar 

  33. W.J. Boettinger:Metall. Trans., 1974, vol. 5, pp. 2023–31.

    Article  CAS  Google Scholar 

  34. A.A. Howe and D.H. Kirkwood:Solidification Processing, Ranmoor House, Sheffield, United Kingdom, Sept. 1987, pp. 41–43.

  35. M.C.M. Cornelissen:Ironmaking and Steelmaking, 1986, vol. 13 (4), pp. 204–12.

    CAS  Google Scholar 

  36. W.A. Johnson and R.F. Mehl:Trans. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  37. M. Avrami:J. Chem. Phys., 1939, vol. 7, p. 1103; 1940, vol. 8, p. 212; 1941, vol. 9, p. 177.

    Article  CAS  Google Scholar 

  38. E.B. Hawbolt, B. Chau, and J.K. Brimacombe:Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  39. M. Umemoto, K. Horiuchi, and I. Tamura:Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 690–95.

    CAS  Google Scholar 

  40. M.B. Kuban, R. Jayaraman, E.B. Hawbolt, and J.K. Brimacombe:Metall. Trans. A, 1986, vol. 17A, pp. 1493–1503.

    CAS  Google Scholar 

  41. N. Ridely:Metall. Trans. A, 1984, vol. 15A, pp. 1019–36.

    Google Scholar 

  42. D.D. Pearson and J.D. Verhoeven:Metall. Trans. A, 1984, vol. 15A, pp. 1037–45 and 1047–54.

    CAS  Google Scholar 

  43. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka:Metall. Trans. B, 1986, vol. 17B, pp. 845–59.

    Article  CAS  Google Scholar 

  44. A.R. Marder and B.L. Bramfitt:Metall. Trans. A, 1975, vol. 6A, pp. 2009–14.

    CAS  Google Scholar 

  45. B.E. Sundquist:Acta Metall., 1968, vol. 16, pp. 1413–27.

    Article  CAS  Google Scholar 

  46. Hatto Jacobi and Klaus Schwerdtfeger:Metall. Trans. A, 1976, vol. 7A, pp. 811–20.

    CAS  Google Scholar 

  47. H.D. Brody and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, p. 615.

    CAS  Google Scholar 

  48. T.W. Clyne and W. Kurz:Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  49. L.S. Darken and R.P. Smith:Ind. Eng. Chem., 1951, vol. 43, p. 1815.

    Article  CAS  Google Scholar 

  50. W.C. Leslie:The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981, pp. 74–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, J., Tseng, A.A. Microscopic modeling of fundamental phase transformations in continuous castings of steel. Metall Trans A 23, 457–467 (1992). https://doi.org/10.1007/BF02801163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801163

Keywords

Navigation