Skip to main content
Log in

Specific role of manganese and magnesium on RNA synthesis in rabbit bone marrow erythroid cell nuclei

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Specific roles of managanese (Mn) and magnesium (Mg) on the activities of DNA-dependent RNA polymerases I and II isolated from rabbit bone marrow erythroid cell nuclei were investigated. Three main polymerases were separated from the cell nuclei. When RNA polymerase I and Mg were added to the RNA synthesis assay mixture containing erythroid cell DNA as template, RNA transcription activity was highest, but when Mg was replaced with Mn, denatured calf thymus DNA formed a better template than erythroid cell DNA. In contrast, nucleoplasmic DNA from erythroid cell and liver DNA were the best templates to stimulate RNA transcription when RNA polymerase II and Mn were added to the assay mixture. However, if Mn was replaced with Mg, RNA synthesis activity was drastically reduced when the template was nucleoplasmic DNA of erythroid cell. RNA polymerase I and Mg synthesized GC rich RNA, whereas RNA polymerase II and Mn synthesized AU rich RNA. Sedimentation analysis showed that the molecular weights of the RNA produced by polymerase I were larger when the enzyme was activated with Mg than with Mn, whereas those of the RNA produced by polymerase II were larger with Mn than with Mg. Furthermore, RNA produced by polymerase I and Mg using chromatin as a template hybridized better with nucleolar DNA than with nucleoplasmic DNA, whereas that produced by polymerase II and Mn hybridized better with nucleoplasmic DNA than with nucleolar DNA. These results suggest that RNA synthesis is dependent on the activity of specific RNA polymerases and the presence of specific divalent cations and templates, and that the cofactor and template for RNA polymerase I are, respectively, Mg and the nucleolar DNA of cell nuclei, whereas those for RNA polymerase II are Mn and nucleoplasmic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Roeder and W. J. Rutter,Nature 224 234 (1969).

    Article  PubMed  CAS  Google Scholar 

  2. R. G. Roeder and W. J. Rutter,Biochemistry 9, 2543 (1970).

    Article  PubMed  CAS  Google Scholar 

  3. T. Matsu, J. Segall, P. A. Meil, and R. G. Roeder,J. Biol. Chem. 255, 11992 (1980).

    Google Scholar 

  4. M. Samuels, A. Hire, and P. A. Sharp,J. Biol. Chem. 257, 14419 (1982).

    PubMed  CAS  Google Scholar 

  5. M. T. M. Shander, C. Croce, and R. Weinmann,J. Cell Physiol. 113, 324 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. R. H. Falchuk, C. Hardy, L. Ulpino, and B. L. Vallee,Proc. Natl. Acad. Sci. USA 75, 4175 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. I. Grummt,Proc. Natl. Acad. Sci. USA 78, 727 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. E. Long and I. David,Ann. Rev. Biochem. 49, 727 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Nishima, R. Kominami, T. Honjo, and M. Muramatsu,Biochemistry 19, 3780 (1980).

    Article  Google Scholar 

  10. J. Paul and R. S. Glimour,J. Mol. Biol. 16, 242 (1966).

    Article  PubMed  CAS  Google Scholar 

  11. M. E. Morris and H. Gould,Proc. Natl. Acad. Sci. USA 68, 481 (1971).

    Article  PubMed  CAS  Google Scholar 

  12. J. Paul, D. Carroll, R. S. Gilmour, J. A. R. More, G. Threlfall, M. Wilkie, and S. Wilson, inKarolinska Symposia on Research Methods in Reproductive Methods in Reproductive Endoctrinology, No. 5, Gene Transcription in Reproductive Tissue, E. Diczfalusy, ed. Karolinska Institute, Stockholm (1972) p. 227.

    Google Scholar 

  13. P. H. W. Butterworth, R. F. Cox, and C. J. Chesterton,Eur. J. Biochem. 23, 229 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. D. Maryanka and H. Gould,Proc. Natl. Acad. Sci. USA 70, 1161 (1973).

    Article  PubMed  CAS  Google Scholar 

  15. A. W. Steggles, G. N. Wilson, J. A. J. Kantor, D. J. Picciano, A. K. Falvey, and W. F. Anderson,Proc. Natl. Acad. sci. USA 71, 1219 (1974).

    Article  PubMed  CAS  Google Scholar 

  16. R. S. Gilmour and J. Paul,Proc. Natl. Acad. Sci. USA 70, 3440 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. R. Axel, H. Cedar, and G. Felsenfeld,Proc. Natl. Acad. Sci. USA 70, 2029 (1973).

    Article  PubMed  CAS  Google Scholar 

  18. T. Barrett, D. Mayanka, P. H. Hamlyn, and H. J. Gould,Proc. Natl. Acad. Sci. USA 71, 5057 (1974).

    Article  PubMed  CAS  Google Scholar 

  19. K. Burton,Biochem. J. 62, 315 (1965).

    Google Scholar 

  20. G. Cerotti,J. Biol. Chem. 214, 59 (1955).

    Google Scholar 

  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  22. R. J. Robison and T. G. Thompson,J. Mar. Biol. 7, 33 (1948).

    Google Scholar 

  23. C. C. Widnell and J. R. Tate,Biol. 92, 313 (1964).

    CAS  Google Scholar 

  24. K. S. Kirby,Biochem. J. 64, 405 (1956).

    PubMed  CAS  Google Scholar 

  25. K. Bovre and W. Szybalski,Methods in Enzymology XXI: Part D350, (1971).

  26. B. J. Schmeckpeper and K. D. Smith,Biochemistry 11, 1319 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. M. F. Trendelenburg,Hum. Genet.,63, 197 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. K. G. Miller and B. Sollner-Webb,Cell,27, 165–174 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. P. A. Weil, D. S. Luse, J. Segall, and R. G. Roeder,Cell,18, 469 (1979).

    Article  PubMed  CAS  Google Scholar 

  30. J. Segall, T. Matsui, and R. G. Roeder,J. Biol. Chem. 255, 11986 (1980).

    PubMed  CAS  Google Scholar 

  31. G. M. Maniatis, R. A. A. Rifkind, A. Bank, and P. A. Marks,Proc. Natl. Acad. Sci. USA 70, 3189 (1973).

    Article  PubMed  CAS  Google Scholar 

  32. P. Chambon, F. Gissinger, C. Kedinger, J. L. Mandel, M. Meilhac and P. Nuret,Karolinska Symposia on Research Methods in Reproductive Endocrinology, No. 5 Gene Transcription in Reproductive Tissue, E. Diczfalusy, ed., Karolinska Institute Stockholm 1972, p. 222.

    Google Scholar 

  33. R. J. Schwartz, M. J. Tsai, S. Y. Tsai, and B. O'Malley,J. Biol. Chem. 250, 5175 (1975).

    PubMed  CAS  Google Scholar 

  34. S. Ohno,Nature 234, 134 (1971).

    Article  CAS  Google Scholar 

  35. J. Drews and L. Wagner,Eur. J. Biochem. 13, 231 (1970).

    Article  PubMed  CAS  Google Scholar 

  36. Z. Darynkiewicz, E. Chelmicka-szorc, and G. W. Arnason,Proc. Natl. Acad. Sci. USA 71, 644 (1974).

    Article  Google Scholar 

  37. E. E. Handler, N. Mendelson, and E. S. Handler,Blood,44, 535 (1974).

    PubMed  CAS  Google Scholar 

  38. J. A. Nicolette and M. Babler,Arch. Biochem. Biophys. 163, 263 (1974).

    Article  PubMed  CAS  Google Scholar 

  39. H. Greenberg and S. Penman,J. Mol. Biol. 21, 527 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.K., Hunt, J.A. Specific role of manganese and magnesium on RNA synthesis in rabbit bone marrow erythroid cell nuclei. Biol Trace Elem Res 16, 203–219 (1988). https://doi.org/10.1007/BF02797136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02797136

Index Entries

Navigation