Skip to main content
Log in

Modified in vivo subunits of DNA-dependent RNA polymerase III in mammals

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Three subunits (simultaneously phosphorylated and glycosylated) were identified as a parts of the subfractions of DNA-dependent RNA polymerase III isolated from nuclei of 3T3 mouse fibroblast culture, A431 epidermoid carcinoma cells, and mature human placenta. Subunits with molecular weights of 60 and 45 kDa and a subunit with a molecular weight of 52 kDa (which is probably one of the basal transcription factors of RNA polymerase III) were modified in the composition of the enzyme isolated from human cells. Modifications in three polypeptides with molecular weights of 49, 45, and 42 kDa were identified in the composition of subfractions of the enzyme isolated from the mouse fibroblast culture. The 45-kDa subunit is probably a component of the basal transcription factor of RNA polymerase III, since it is not identified in the mouse enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CK2:

casein kinase 2

Brf2 and Bdp1:

associated TFIIIB components

TBP:

TATA-box binding protein

TFIIIB:

basal transcription factor of RNA polymerase III

References

  • Arimbasseri, A.G. and Maraia, R.J., Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III, Mol. Cell. Biol., 2013, vol. 33, pp. 1571–1581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baer, M., Nilsen, T.W., Costigan, C., and Altman, S., Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P, Nucleic Acids Res., 1989, vol. 18, pp. 97–103.

    Article  Google Scholar 

  • Bell, G.L., Valenzuela, P., and Rutter, W.J., Phosphorylation of yeast DNA-dependent RNA polymerases in vivo and in vitro (isolation enzymes and identification of phosphorylated subunits), J. Biol. Chem., 1977, vol. 252, pp. 3082–3091.

    CAS  PubMed  Google Scholar 

  • Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M., Signaling by protein phosphatases in the nucleus, Trends Cell Biol., 2002, vol. 12, pp. 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T.R., Scott, P.H., Stein, T., and Winter, A.G., RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents, Gene Expr., 2000, vol. 9, pp. 15–28.

    CAS  PubMed  Google Scholar 

  • Carter, R. and Drouin, G., The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase IIis due to the permanent recruitment of general transcription factors, Mol. Biol. Evol., 2010, vol. 27, pp. 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  • Chou, T.Y., Hart, G.W., and Dang, C.V., C-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas, J. Biol. Chem., 1995, vol. 270, pp. 18961–18965.

    Article  CAS  PubMed  Google Scholar 

  • Comer, F.I. and Hart, G.W., O-GlcNAc and the control of gene expression, Biochem. Biophis. Acta., 1999, vol. 1473, pp. 161–171.

    Article  CAS  Google Scholar 

  • Devos, D.P., Lindner, D., Christoph, W., and Muller, C.W., Conformational flexibility of RNA polymerase III during transcriptional elongation, EMBO J., 2010, vol. 29, pp. 3762–3772.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dignam, J.D., Leibovitz, R.M., and Roeder, R.G., Accurate transcription initiation by RNA polymerase IIin soluble extract from isolated mammalian nuclei, Nucleic Acids Res., 1983, vol. 11, pp. 1475–1477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumay, H., Rubbi, L., Sentenac A., and Marck, Ch., Interaction between yeast RNA polymerase III and transcription factor TFIIIC via ABC10a and t131 subunits, J. Biol. Chem., 1999, vol. 274, pp. 33462–33468.

    Article  CAS  PubMed  Google Scholar 

  • Felton-Edkins, Z.A., Fairley, J.A., Graham, E.L., Johnston, I.M., White, R.J., and Scott, P.H., The mitogenactivated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB, EMBO J., 2003, vol. 22, pp. 2422–2432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiduschek, E.P. and Kassavetis, G.A., The RNA polymerase III transcription apparatus, J. Mol. Biol., 2001, vol. 310, pp. 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Geiduschek, E.P. and Tocchini-Valentini, G.P., Transcription by RNA polymerase III, Annu. Rev. Biochem., 1988, vol. 57, pp. 873–914.

    Article  CAS  PubMed  Google Scholar 

  • Gottesfeld, J.M. and Forbes, D.J., Mitotic repression of the transcriptional machinery, Trends Biochem. Sci., 1997, vol. 22, pp. 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Haltiwangeler, R.S., Busby, S., Grove, K., Li, S., Mason, D., Medina, L., Moloney, D., Philipsberg, G., and Scartozzi, R., O-Glycosylation of nuclear and cytoplasmic proteins: regulation analogous to phosphorylation, Biochem. Biophys. Res. Commun., 1997, vol. 231, pp. 237–242.

    Article  Google Scholar 

  • Hannan, R.D., Hempel, W.M., Cavanaygh, A., Arino, T., Dimitrov, S.I., Moss, T., and Rothblum, L., Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase, J. Biol. Chem., 1998, vol. 273, pp. 1257–1267.

    Article  CAS  PubMed  Google Scholar 

  • Hu, P., Wu, S., and Hernandes, N., A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2, Mol. Cell., 2003, vol. 12, pp. 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Hu, P., Samudre, K., Wu, S., Sun, Y., and Hernandes, N., CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression, Mol. Cell., 2004, vol. 16, pp. 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Huet, J., Manaud, N., Dieci, G., Peyroche, G., Conesa, C., Lefebvre, O., Ruet, A., Riva, M., and Sentenac, A., RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae, Methods Enzymol., 1996, vol. 273, pp. 249–267.

    Article  CAS  PubMed  Google Scholar 

  • Kamemura, K. and Hart, G.W., Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription, Prog. Nucl. Acid Res. Mol. Biol., 2003, vol. 73, pp. 107–136.

    Article  CAS  Google Scholar 

  • Kassavetis, G.A., Prakash, P., and Shim, E., The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening, J. Biol. Chem., 2010, vol. 285, pp. 2695–2706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmly, O., Maturation of head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  Google Scholar 

  • Leresche, A., Wolf, V.J., and Gottesfeld, J.M., Repression of RNA polymerase III transcription during M phase of the cell cycle, Exp. Cell Res., 1996, vol. 229, pp. 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Mauger, E. and Scott, P.H., Mitogenic stimulation of transcription by RNA polymerase III, Biochem. Soc. Actions, 2004, vol. 32, pp. 976–977.

    Article  CAS  Google Scholar 

  • Merkulova, N.A. and Sedova, V.M., Dynamic phosphorylation of RNA polymerase III subunits from epidermoid carcinoma cells A431 cultivated under different conditions, Tsitologiia, 2006, vol. 48, no. 9, pp. 711–716.

    CAS  PubMed  Google Scholar 

  • Paule, M.R. and White, R.J., Transcription by RNA polymerase I and III, Nucleic Acids Res., 2000, vol. 28, pp. 1283–1298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm, L. and Hernandes, N., Recruitment of RNA polymerase III to its target promoters, Gen. Dev., 2002, vol. 16, pp. 2593–2620.

    Article  CAS  Google Scholar 

  • Sentenac, A., Eukaryotic RNA polymerases, CRC Critical Rev. Biochem., 1985, vol. 18, pp. 31–90.

    Article  CAS  Google Scholar 

  • Sklar, V.E.F. and Roeder, R.G., Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase III from the mouse plasmacytoma, MOPC 315, J. Biol. Chem., 1976, vol. 251, pp. 1064–1073.

    CAS  PubMed  Google Scholar 

  • Solodovnikova, A.S., Merkulova, N.A., Perova, A.A., and Sedova, V.M., The subunits of human holoenzyme DNA dependent RNA polymerase III phosphorylated in vivo, Tsitologiia, 2005, vol. 47, no. 12, pp. 1082–1087.

    CAS  PubMed  Google Scholar 

  • Topper, J.N. and Clayton, D.A., Characterization of human MRP/Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP, Nucleic Acids Res., 1990, vol. 18, pp. 793–799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres, C.R. and Hart, G.W., Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J. Biol. Chem., 1984, vol. 259, pp. 3308–3317.

    CAS  PubMed  Google Scholar 

  • Vosseler, K., Wells, L., and Hart, G.W., Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics, Biochimie, 2001, vol. 83, pp. 575–581.

    Article  Google Scholar 

  • Wells, L. and Hart, G.W., O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar, FEBS Lett., 2003, vol. 546, pp. 154–158.

    Article  CAS  PubMed  Google Scholar 

  • Wells, L., Vosseller, K., Cole, R.N., Cronshaw, J.M., Matunis, M.J., and Hart, G.W., Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications, Mol. Cell Proteomics, 2002, vol. 1, pp. 791–804.

    Article  CAS  PubMed  Google Scholar 

  • Westmark, C.J., Ghose, R., and Huber, P.W., Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity, Nucleic Acids Res., 1998, vol. 26, pp. 4758–4764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitmarsh, A.J. and Davis, R.J., Regulation of transcription factor function by phosphorylation, Cell Mol. Life Sci., 2000, vol. 57, pp. 1172–1183.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Ch.-Ch., Herzogc, F., Jennebachd, S., Lina, Y.-Ch., Paia, Ch.-Y., Aebersoldc, R., Cramerd, P., and Chena, H.-T., RNA polymerase III subunit architecture and implications for open promoter complex formation, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 19232–19237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sedova.

Additional information

Original Russian Text © N.A. Merkulova, V.M. Sedova, 2015, published in Tsitologiya, 2015, Vol. 57, No. 4, pp. 254–259.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulova, N.A., Sedova, V.M. Modified in vivo subunits of DNA-dependent RNA polymerase III in mammals. Cell Tiss. Biol. 9, 284–289 (2015). https://doi.org/10.1134/S1990519X15040069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15040069

Keywords

Navigation