Skip to main content
Log in

A study of the thermodynamics and influence of temperature on chiral high-performance liquid chromatographic separations using cellulosetris(3,5-dimethylphenylcarbamate) coated zirconia stationary phases

  • Originals
  • Column Liquid Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

In chiral HPLC, the separation is based on the differential interaction of a pair of enantiomeric molecules with a chiral selector. Temperature will affect such interactions. Most studies indicate that a decrease in temperature increases chromatographic selectivity. This is consistent with an enthalpy-controlled separation, but a more complete characterization of the physicochemical interactions is required to understand the driving forces for chiral recognition.

In this work, we studied the separation of a number of enantiomers on cellulosetris(3,5-dimethylphenylcarbamate) supported on porous zirconia, over the temperature range of 0 to 55°C usingn-hexane/2-propanol mixtures as the eluent. The differences in the enthalpy (Δ(ΔH°)) and entropy (Δ(ΔS°)) of transfer of the enantiomers from the mobile to the chiral stationary phase were estimated from van’t Hoff plots. These relationships allow the study of the origin of the differences in interaction energies. The most interesting finding is that while most solutes show a negative Δ(ΔH°) difference, the two most easily resolved enantiomeric pairs were separated by an entropy dominated process. Studies of the relationship between the thermodynamics of transfer of these two entropically controlled separations and the eluent composition showed a substantial change in the interaction energies of these two solutes with the chiral polymer when the alcohol was reduced to 2% (ν/gn). Finally, we show that there is virtually no correlation between Δ(ΔG°) and overall retention, between Δ(ΔH°) and ΔH°, and little or no enthalpy-entropy compensation. These findings indicate the extreme difficulty in predicting or even correlating chiral selectivity with overall intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fornstedt, T.; Sajonz, P.; Guiochon, G.J. Am. Chem. Soc. 1997,119, 1254–1264.

    Article  CAS  Google Scholar 

  2. Koppenhoefer, B.; Bayer, E.Chromatographia 1984,19, 123–127.

    Article  CAS  Google Scholar 

  3. Schurig, V.; Betschinger, F.Chem. Rev. 1992,92, 873–887.

    Article  CAS  Google Scholar 

  4. Watabe, K.; Charles, R.; Gil-Av, E.Angew. Chem. Int. Ed. Engl. 1989,28, 192–194.

    Article  Google Scholar 

  5. Schurig, V.; Ossig, J.; Link, R.Angew. Chem., Int. Ed. Engl. 1989,28, 194–196.

    Article  Google Scholar 

  6. Koppenhoefer, B.; Lin, B.J. Chromatogr. 1989,481, 17–26.

    Article  CAS  Google Scholar 

  7. Stringham, R.W.; Blackwell, J.A.Anal. Chem. 1997,69, 1414–1420.

    Article  CAS  Google Scholar 

  8. Stringham, R.W.; Blackwell, J.A.Anal. Chem. 1996,68, 2179–2185.

    Article  CAS  Google Scholar 

  9. Papadopoulou-Mourkidou, E.Anal. Chem. 1989,61, 1149–1151.

    Article  CAS  Google Scholar 

  10. Pirkle, W.H.J. Chromatog. 1991,558, 1–6.

    Article  CAS  Google Scholar 

  11. Galli, B.; Gasparrini, F.; Misiti, D.; Pierini, M.; Villani, C.; Bronzetti, M.Chirality 1992,4, 384–388.

    Article  CAS  Google Scholar 

  12. Pirkle, W.H.; Murray, P.G.J. High Res. Chromatog. 1993,16, 285–288.

    Article  CAS  Google Scholar 

  13. Cabrera, K.; Lubda, D.J. Chromatogr. 1994,666, 433–438.

    Article  CAS  Google Scholar 

  14. Péter, A.; Török, G.; Armstrong, D. W.; Tóth, G.; Tourwé, D.J. Chromatogr. 1998,828, 177–190.

    Article  Google Scholar 

  15. Jönsson, S.; Schön, A.; Isaksson, R.; Petterson, C.; Petterson, G.Chirality 1992,4, 505–508.

    Article  Google Scholar 

  16. Karlsson, A.; Aspegren, A.Chromatographia 1998,47, 189–196.

    Article  CAS  Google Scholar 

  17. Bálmer, K.; Lagerström, P.-O.; Persson, B.-A.; Schill, G.J. Chromatogr. 1992,592, 331–337.

    Article  Google Scholar 

  18. Witte, D.T.; Franke, J.P.; Bruggeman, F.J.; Dijkstra, D.; de Zeeuw, R.A.Chirality 1992,4, 389–394.

    Article  CAS  Google Scholar 

  19. Küsters, E.; Loux, V.; Schmid, E.; Floersheim, P.J. Chromatogr. 1994,666, 421–432.

    Article  Google Scholar 

  20. Yashima, E.; Sahavattanapong, P.; Okamoto, Y.Chirality 1996,8, 446–451.

    Article  CAS  Google Scholar 

  21. O’Brien, T.; Crocker, L.; Thompson, R.; Thompson, K.; Toma, P.H.; Conlon, D.A.; Feibush, B.; Moeder, C.; Bicker, G.; Grinberg, N.Anal. Chem. 1997,69, 1999–2007.

    Article  CAS  Google Scholar 

  22. Davankov, V.A. InAdvances in Chromatography: Brown, P. R.; Grushka, E., Eds, Marcel Dekker, New York, 1980; Vol. 18, p. 139–195.

    Google Scholar 

  23. Castells, C.B.; Carr, P.W.Anal. Chem. 1999,71, 3013–3021.

    Article  CAS  Google Scholar 

  24. Okamoto, O.; Kawashima, M.; Hatada, K.J. Chromatogr. 1986,363, 173–186.

    Article  CAS  Google Scholar 

  25. Klarman, A.; Galanti, A.; Sperling, L.J. Polymer Sci., A-2 1969,7, 1513–1523.

    Article  CAS  Google Scholar 

  26. Schurig, V.; Bürkle, W.; Hintzer, K.; Weber, R.;J. Chromatogr. 1989,475, 23–44.

    Article  CAS  Google Scholar 

  27. Huang, J.-C.J. Chromatogr. 1985,321, 458–461.

    Article  CAS  Google Scholar 

  28. Kuchar, M.; Tomkova, H.; Rejholec, V.; Korhonen, I.O.O.J. Chromatogr. 1987,398, 43–51.

    Article  CAS  Google Scholar 

  29. Li, J.; Carr, P.W.J. Chromatogr. 1994,670, 105–116.

    Article  CAS  Google Scholar 

  30. Reddy, K.S.; Dutoit, J.-C.; Kováts, E.S.J. Chromatogr. 1992,609, 229.

    Article  CAS  Google Scholar 

  31. Melander, W.; Campbell, D.E.; Horváth, C.J. Chromatogr. 1978,158, 215–225.

    Article  CAS  Google Scholar 

  32. Vigh, G.; Varga-Puchony, Z.J. Chromatogr. 1980,196, 1–9.

    Article  CAS  Google Scholar 

  33. Krug, R.R.Ind. Eng. Chem. Fundam. 1980,19, 50–59.

    Article  CAS  Google Scholar 

  34. Wainer, I.W.; Alembik, M.C.J. Chromatogr. 1986,358, 85–93.

    Article  CAS  Google Scholar 

  35. Lipkowitz, K.B.J. Chromatogr. 1994,666, 493–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castells, C.B., Carr, P.W. A study of the thermodynamics and influence of temperature on chiral high-performance liquid chromatographic separations using cellulosetris(3,5-dimethylphenylcarbamate) coated zirconia stationary phases. Chromatographia 52, 535–542 (2000). https://doi.org/10.1007/BF02789747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789747

Keywords

Navigation