Skip to main content
Log in

Gene targeting of retinoid receptors

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene targeting in embryonic stem (ES) cells has been employed to investigate the role of the retinoid receptors and binding proteins both in the mouse as well as in embryocarcinoma cells. It is a powerful technique for the modification of the mouse genome. With more recent refinements in gene targeting technology, it is now possible to introduce more subtle mutations in the murine genome, as well as to investigate gene function in a tissue and temporally-restricted manner. It should also be possible to modify genes in diverse diploid cell lines, to generate diverse model systems for analysis of retinoid receptor function. In this article, some of the basic principles for gene targeting are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez-Solis, R. and Bradley, A. (1994). Advances in the use of embryonic stem cell technology. Cur. opin. biotechnol.5, 528–533.

    Article  CAS  Google Scholar 

  2. Joyner, A. L. (1991) Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development. Bioessays13, 649–656.

    Article  PubMed  CAS  Google Scholar 

  3. Branson, S. K. and Smithies, O. (1994) Altering mice by homologous recombination using embryonic stem cells. J. Biol. Chem.269, 27,155–27,158.

    Google Scholar 

  4. Lufkin, T., Lohnes, D., Mark, M., Dierich, A., Gorry, P., Gaub, M. P., LeMeur, M., and Chambon, P. (1993) High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc. Natl. Acad. Sci. USA.90, 7225–7229.

    Article  PubMed  CAS  Google Scholar 

  5. Lohnes, D., Kastner, P., Dierich, A., Mark, M., LeMeur, M., and Chambon, P. (1993) Function of retinoic acid receptor gamma in the mouse. Cell73, 643–658.

    Article  PubMed  CAS  Google Scholar 

  6. Li, E., Sucov, H. M., Lee, K. F., Evans, R. M., and Jaenisch, R. (1993) Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc. Natl. Acad. Sci. USA90, 1590–1594.

    Article  PubMed  CAS  Google Scholar 

  7. Mendelsohn, C., Mark, M., Doll, P., Dierich, A., Gaub, M. P., Krust, A., Lampron, C., and Chambon, P. (1994). Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev. Biol.166, 246–258

    Article  PubMed  CAS  Google Scholar 

  8. Kastner, P., Grondona, J. M., Mark, M., Gansmuller, A., LeMeur, M., Decimo, D., Vonesch, J. L., Dollé, P., and Chambon, P. (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell78, 987–1003.

    Article  PubMed  CAS  Google Scholar 

  9. Kastner, P., Mark, M., Leid, M., Gansmuller, A., Chin, W., Grondona, J. M., Decimo, D., Krezel, W., Dierich, A., and Chambon, P. (1996) Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev.10, 80–92.

    Article  PubMed  CAS  Google Scholar 

  10. Luo, J., Pasceri, P., Conlon, R. A., Rossant, J., and Giguére, V. (1995) Mice lacking all isoforms of retinoic acid receptor beta develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech.Dev.53, 61–71.

    Article  PubMed  CAS  Google Scholar 

  11. Lohnes, D., Mark, M., Mendelsohn, C., Dollé, P., Dierich, A., Gorry, P., Gansmuller, A., and Chambon, P. (1994) Function of the retinoic acid receptors (RARs) during development. (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development120, 2723–2748.

    PubMed  CAS  Google Scholar 

  12. Mendelsohn, C., Lohnes, D., Décimo, D., Lufkin, T., LeMeur, M., Chambon, P., and Mark, M. (1994) Function of the retinoic acid receptors (RARs) during development. (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development120, 2749–2771.

    PubMed  CAS  Google Scholar 

  13. Gorry, P., Lufkin, T., Dierich, A., Rochette-Egly, C., Décimo, D., Dollé, P., Mark, M., Durand, B., and Chambon, P. (1994) The cellular retinoic acid binding protein I is dispensable. Proc. Natl. Acad. Sci. USA91, 9032–9036

    Article  PubMed  CAS  Google Scholar 

  14. Fawcett, D., Pasceri, P., Fraser, R., Colbert, M., Rossant, J., and Giguére, V. (1995) Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development121, 671–679.

    PubMed  CAS  Google Scholar 

  15. Lampron, C., Rochette-Egly, C., Gorry, P., Dollé, P., Mark, M., Lufkin, T., LeMeur, M., and Chambon, P. (1995) Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development121, 539–548.

    PubMed  CAS  Google Scholar 

  16. Boylan, J. F., Lohnes, D., Taneja, R., Chambon, P., and Gudas, L. J. (1993) Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc. Natl. Acad. Sci. USA90, 9601–9605.

    Article  PubMed  CAS  Google Scholar 

  17. Boylan, J. F., Lufkin, T., Achkar, C. C., Taneja, R., Chambon, P., and Gudas, L. J. (1995) Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol. Cell. Biol.15, 843–851.

    PubMed  CAS  Google Scholar 

  18. Hogan, B., Beddington, R., Costantini, F., and Lacy, E., eds. (1994) Manipulating the Mouse Embyro (2nd ed.). Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  19. Ramirez-Solis, R., Davis, A. C., and Bradley, A. (1993) Gene targeting in embryonic stem cells. Methods Enzymol.225, 855–878.

    Article  PubMed  CAS  Google Scholar 

  20. Jeannotte, L., Ruiz, J. C., and Robertson, E. J. (1991) Low level of Hoxl.3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. Mol. Cell. Biol.11, 5578–5585.

    PubMed  CAS  Google Scholar 

  21. Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991) Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature350, 243–246.

    Article  PubMed  CAS  Google Scholar 

  22. Gossler, A., Doetschman, T., Korn, R., Serfling, E., and Kemler, R. (1986) Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc. Natl. Acad. USA86, 9065–9069.

    Article  Google Scholar 

  23. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  24. Thomas, K. R., Folger, K. R., and Capecchi, M. R. (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell44, 419–428.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas, K. R., Deng, C., and Capecchi, M. R. (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol.12, 2919–2923.

    PubMed  CAS  Google Scholar 

  26. Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R., and Bradley, A. (1993) Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell73, 279–294.

    Article  PubMed  CAS  Google Scholar 

  27. Ramirez-Solis, R., Liu, P. T., and Bradley, A. (1995) Chromosome engineering in mice. Nature378, 720–724.

    Article  PubMed  CAS  Google Scholar 

  28. Gu, H., Zou, Y. R., and Rajewsky, K. (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell73, 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  29. Sauer, B. (1996) Manipulation of transgenes by sitespecific recombination: use of Cre recombinase. Methods Enzymol.225, 890–900.

    Google Scholar 

  30. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science265, 103–106.

    Article  PubMed  CAS  Google Scholar 

  31. te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. of Sci. USA89, 5128–5132.

    Article  Google Scholar 

  32. Hasty, P., Rivera-Perez, J., and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol.11, 5586–5591.

    PubMed  CAS  Google Scholar 

  33. Deng, C. and Capecchi, M.R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol.12, 3365–3371.

    PubMed  CAS  Google Scholar 

  34. Miranda, M. and DePamphilis, M. L. (1993) Preparation of injection pipettes. Methods Enzymol.225, 407–412.

    PubMed  CAS  Google Scholar 

  35. Mombaerts, P., Clarke, A. R., Hooper, M. L., and Tonegawa, S. (1991) Creation of a large genomic deletion at the T-cell antigen receptor beta-subunit locus in mouse embryonic stem cells by gene targeting. Proc. Natl. Acad. USA88, 3084–3087.

    Article  CAS  Google Scholar 

  36. Zhang, H., Hasty, P., and Bradley, A. (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol. Cell. Biol.14, 2404–2410.

    PubMed  CAS  Google Scholar 

  37. Mansour, S. L., Thomas, K. R., Deng, C. X., and Capecchi, M. R. (1990) Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination. Proc. Natl. Acad. Sci. USA87, 7688–7692.

    Article  PubMed  CAS  Google Scholar 

  38. Friedrich, G., and Soriano, P. (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev.5, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  39. Deng, C., Thomas, K. R., and Capecchi, M. R. (1993) Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol.13, 2134–2140.

    PubMed  CAS  Google Scholar 

  40. Yagi, T., Ikawa, Y., Yoshida, K., Shigetani, Y., Takeda, N., Mabuchi, I., Yamamoto, T., and Aizawa, S. (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA87, 9918–9922.

    Article  PubMed  CAS  Google Scholar 

  41. Hasty, P., Crist, M., Grompe, M., and Bradley, A. (1994) Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol. Cell. Biol.14, 8385–8390.

    PubMed  CAS  Google Scholar 

  42. Mortensen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G. (1991) Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA88, 7036–7040.

    Article  PubMed  CAS  Google Scholar 

  43. Wood, S. A., Allen, N. D., Rossant, J., Auerbach, A., and Nagy, A. (1993) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature365, 87–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lohnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohnes, D. Gene targeting of retinoid receptors. Mol Biotechnol 11, 67–84 (1999). https://doi.org/10.1007/BF02789177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789177

Index Entries

Navigation