Skip to main content
Log in

Hybridization of glass-tethered oligonucleotide probes to target strands preannealed with labeled auxiliary oligonucleotides

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this article we introduce a strategy of preanncaling labeled auxiliary oligonucleotides to single-stranded target DNA, prior to hybridization of the DNA target to oligonucleotide arrays (genosensors) formed on glass slides for the purpose of mutation analysis. Human genomic DNA samples from normal individuals and cystic fibrosis (CF) patients (including homozygous δF508 and heterozygous δF508/wild type (wt) in the region examined) were used. A PCR fragment of length 138 bp (wt) or 135 bp (mutant) was produced from exon l0 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, using a new pair of polymerase chain reaction (PCR) primers. This fragment contains four of the most frequent mutation sites causing the disease (Q493X, δI507, δF508, and V520F). Each of these mutations was tested using a pair of nonamer (9-mer) probes covalently attached to glass slides, representing the normal (wt) and the mutant allcles. Single-stranded target DNA was isolated from the PCR fragment using one PCR primer labeled with biotin and a streptavidin minicolumn to capture the biotin-labeled strand. Prior to hybridization to the 9-mer array on a glass slide, the unlabeled target strand was preannealed with one, three, or four auxiliary oligonucleotides, at least one being labeled with32P. As observed previously in several laboratories, the discrimination between normal (wt) and mutant alleles at each site using oligonucleotide array hybridization ranged from very good to poor, depending on the number and location of mismatches between probe and target. Terminal mismatches along the probe were difficult to discriminate, internal mismatches were more easily discriminated, and multiple mismatches were very well discriminated. An exceptionally intense hybridization signal was obtained with a 9-mer probe that hybridized contiguously (in tandem) with one auxiliary oligonucleotide preannealed to the target DNA. The increased stability is apparently caused by strong base slacking interactions between the “capture probe” and the auxiliary oligonucleotide. The presence of the δF508 mutation was delected with this system, including discrimination between homozygous and heterozygous conditions. Base mismatch discrimination using the arrayed 9-mcr probes was improved by increasing the temperature of hybridization from 15 to 25‡C. Auxiliary oligonucleotides, preannealed to the single-stranded template, may serve several purposes to enable a more robust genosensor-based DNA sequence analysis:

  1. 1

    A convenient means of introducing label into the target DNA molecule.

  2. 2

    Disruption of interfering short-range secondary structure in the region of analysis.

  3. 3

    Covering up of redundant binding sites in the target strand (i.e., where a given probe has more than one complement within the target).

  4. 4

    Tandem hybridization with the capture probe (providing contiguous stacking) as a means for achieving efficient mismatch discrimination at the terminal position of the capture probe (adjacent to the auxiliary oligonucleotide).

By use of multiple auxiliary oligonucleolides. all of the above benefits can be derived simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bains, W. and Smith, G. C. (1988) A novel method for nucleic acid sequence determination.J. Theor. Biol. 135, 303–307.

    Article  PubMed  CAS  Google Scholar 

  2. Southern, E. M. (1988) Analyzing polynucleotide sequences. International patent application PCT GB 89/00460.

  3. Drmanac, R., Labat, I., Brukner, I., and Crkvenjakov, R. (1989) Sequencing of megabase-plus DNA by hybridization: Theory of the method.Genomics 4, 114–128.

    Article  PubMed  CAS  Google Scholar 

  4. Khrapko, K. R., Lysov, Y. P., Khorlyn, A. A., Shick, V. V., Florentiev, V. L., and Mirzabekov, A. D. (1989) An oligonucleotide hybridization approach to DNA sequencing.FEBS Lett. 256, 118–122.

    Article  PubMed  CAS  Google Scholar 

  5. Khrapko, K. R., Lysov, Y. P., Khorlin, A. A., Ivanov, I. B., Yershov, G. M., Vasilenko, S. K., et al. (1991) A method for DNA sequencing by hybridization with oligonucleotide matrix.DNA Sequence 1, 375–388.

    Article  PubMed  CAS  Google Scholar 

  6. Bains, W. (1991) Hybridization methods for DNA sequencing.Genomics 11, 294–301.

    Article  PubMed  CAS  Google Scholar 

  7. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis.Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  8. Beattie, K. L., Eggers, M. D., Shumaker, J. M., Hogan, M. E., Varma, R. S., Lamture, J. B., et al. (1992) Genosensor technology.Clin. Chem. 39, 719–722.

    Google Scholar 

  9. Drmanac, R. and Crkvenjakov, R. (1992) Sequencing by hybridization (SBH) with oligonucleotide probes as an integral approach for the analysis of complex genomes.Int. J. Genome Res. 1, 59–79.

    CAS  Google Scholar 

  10. Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: Evaluation using experimental models.Genomics 13, 1008–1017.

    Article  PubMed  CAS  Google Scholar 

  11. Maskos, U. and Southern, E. M. (1992) Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation.Nucleic Acids Res. 20, 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  12. Drmanac, R., Drmanac, S., Strezoska, Z., Paunesku, T., Labat, I., Zeremski, M., Snoddy, J., Funkhouser, W. K., Koop, B., and Hood, L. (1993) DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing.Science 260, 1649–1652.

    Article  PubMed  CAS  Google Scholar 

  13. Bains, W. (1993) Characterizing and sequencing cDNAs using oligonucleotide hybridization.DNA Sequence 4, 143–150.

    Article  PubMed  CAS  Google Scholar 

  14. Meier-Ewert, S., Maier, E., Ahmadi, A., Curtis, J., and Lehrach, H. (1993) An automated approach to generating expressed sequence catalogues.Nature 361, 375–376.

    Article  PubMed  CAS  Google Scholar 

  15. Mirzabekov, A. D. (1994) DNA sequencing by hybridization—a megasequencing method and a diagnostic tool?Trends Biotechnol. 12, 27–32.

    Article  PubMed  CAS  Google Scholar 

  16. Broude, N. E., Sano, T., Smith, C. L., and Cantor, C. R. (1994) Enhanced DNA sequencing by hybridization.Proc. Natl. Acad. Sci. USA 91, 3072–3076.

    Article  PubMed  CAS  Google Scholar 

  17. Case-Green, S. C., Elder, J. K., Mir, K. U., Maskos, U., Southern, E. M., and Williams, J. C. (1994) Parallel synthesis and analysis: Applications of spatially addressable oligonucleotide arrays, inInnovation and Perspectives in Solid Phase Synthesis, Proceedings of the 3rd International Symposium on Solid Phase Synthesis (Epton, R. ed.), Mayflower Worldwide Ltd., Birmingham, UK, pp. 77–82.

    Google Scholar 

  18. Hoheisel, J. D. (1994) Application of hybridization techniques to genome mapping and sequencing.Trends Genet. 10, 79–83.

    Article  PubMed  CAS  Google Scholar 

  19. Drmanac, S. and Drmanac, R. (1994) Processing of cDNA and genomic kilobase-size clones for massive screening, mapping and sequencing by hybridization.BioTechniques 17, 328–336.

    PubMed  CAS  Google Scholar 

  20. Lamture, J. B., Beattie, K. L., Burke, B. E., Eggers, M. D., Ehrlich, D. J., Fowler, R., et al. (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device.Nucleic Acids Res. 22, 2121–25.

    Article  PubMed  CAS  Google Scholar 

  21. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A. (1994) Lightgenerated oligonucleotide arrays for rapid DNA sequence analysis.Proc. Natl. Acad. Sci. USA 91, 5022–5026.

    Article  PubMed  CAS  Google Scholar 

  22. Nikiforov, T. T., Rendle, R. B., Goelet, P., Rogers, Y.-H., Kotewicz, M. L., Anderson, S., et al. (1994) Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms.Nucleic Acids Res. 22, 4167–4175.

    Article  PubMed  CAS  Google Scholar 

  23. Beattie, W. G., Meng, L., Turner, S., Varma, R. S., Dao, D. D., and Beattie, K. L. (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes.Mol. Biotechnol. 4, 213–225.

    PubMed  CAS  Google Scholar 

  24. Beattie, K., Beattie, W., Meng, L., Turner, S., Bishop, C., Dao, D., et al. (1995) Advances in genosensor research.Clin. Chem. 41, 700–706.

    PubMed  CAS  Google Scholar 

  25. Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Timofeev, E., Belgovskiy, A., et al. (1996) DNA sequencing by hybridization to microchip octaand decanucleotides extended by stacked pentanucleotides.Nucleic Acids Res. 24, 2998–3004.

    Article  PubMed  CAS  Google Scholar 

  26. Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, L., et al. (1996) DNA analysis and diagnostics on oligonucleotide microchips.Proc. Nay. Acad. Sci. USA 93, 4913–4918.

    Article  CAS  Google Scholar 

  27. Caetano-Anolles, G. (1996) Scanning of nucleic acids by in vitro amplification: new developments and applications.Nature Biotechnol. 14, 1668–1674.

    Article  CAS  Google Scholar 

  28. Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P. A., and Collins, F. S. (1996) Detection of heterozygous mutations inBRCA1 using high density oligonucleotide arrays and two-color fluorescence analysis.Nature Genet. 14, 441–447.

    Article  PubMed  CAS  Google Scholar 

  29. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. IV., Chee, M. S., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays.Nature Biotechnol. 14, 1675–1680.

    Article  CAS  Google Scholar 

  30. Southern, E. M. (1996) DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale.Trends Genet. 12, 110–115.

    Article  PubMed  CAS  Google Scholar 

  31. Doktycz, M. J. and Beattie, K. L. (1997) Construction and use of genosensor chips, inAutomated Technologies for Genome Characterization (Beugelsdiik, A., ed.), J. Wiley, New York, pp. 205–225.

    Google Scholar 

  32. Milner, N., Mir, K. U., and Southern, E. M. (1997) Selecting effective antisense reagents on combinatorial oligonucleotide arrays.Nature Biotechnol. 15, 537–541.

    Article  CAS  Google Scholar 

  33. Matteucci, M. D. and Caruthers, M. H. (1981) Synthesis of deoxyoligonucleotides on a polymer support.J. Am. Chem. Soc. 103, 3185–3191.

    Article  CAS  Google Scholar 

  34. Beattie, K. L. and Frost, J. D. III (1992) Porous wafer for segmented synthesis of biopolymers. US Patent # 5,175,209.

  35. Beattie, K. L., Logsdon, N. J., Anderson, R. S., Espinosa-Lara, J. M., Maldonado-Rodriguez, R., and Frost, J. D.III (1988) Gene synthesis technology: Recent developments and future prospects.Appl. Biochem. Biotechnol. 10, 510–521.

    CAS  Google Scholar 

  36. Beattie, K. L. and Hurst, G. D. (1994) Synthesis and use of oligonucleotide libraries, inInnovation and Perspectives in Solid Phase Synthesis, Proceedings of the 3rd International Symposium on Solid Phase Synthesis (Epton, R., ed.), Mayflower Worldwide Ltd., Birmingham, UK, pp. 69–76.

    Google Scholar 

  37. Tsui, Lap-Chee (1992) The spectrum of cystic fibrosis mutatlions.Trends Genet. 8, 392–398.

    PubMed  CAS  Google Scholar 

  38. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S. M., Driver, D. A. Berg, R. H., Kim, S. K., Norden, B., and Nielsen, P. E. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules.Nature 365, 556–568.

    Article  Google Scholar 

  39. Weiler, J., Gausepohl, H., Hauser, N., Jensen, O. N., and Hoheisel, J. D. (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays.Nucl. Acids Res. 25, 2792–2799.

    Article  PubMed  CAS  Google Scholar 

  40. Kieleczawa, J., Dunn, J. J., and Studier, F. W. (1992) DNA sequencing by primer walking with strings of contiguous hexamers.Science 258, 1787–1791.

    Article  PubMed  CAS  Google Scholar 

  41. Kotier, L. E., Zevin-Sonkin, D., Bobolev, I. A., Beskin, A. D., and Ulanovsky, L. E. (1993) DNA sequencing: modular primers assembled from a library of hexamers or pentamers.Proc. Natl. Acad. Sci. USA 90, 4241–4245.

    Article  Google Scholar 

  42. Kaczorowski, T. and Szybalski, W. (1994) Assembly of 18-nucleotide primers by ligation of three hexamers: sequencing of large genomes by primer walking.Anal. Biochem. 221, 127–135.

    Article  PubMed  CAS  Google Scholar 

  43. Kaczorowski, T. and Szybalski, W. (1996) Co-operativity of hexamer ligation.Gene 179, 189–193.

    Article  PubMed  CAS  Google Scholar 

  44. Lodhi, M. A. and McCombie, W. R. (1996) Highquality automated DNA sequencing primed with hexamer strings.Genome Res. 6, 10–18.

    Article  PubMed  CAS  Google Scholar 

  45. Johnson, A. F., Lodhi, M. A., and McCombie, W. R. (1996) Fluorescence-based sequencing of doublestranded DNA by hexamer string priming.Anal. Biochem. 241, 228–237.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado-Rodriguez, R., Espinosa-Lara, M., Calixto-Suárez, A. et al. Hybridization of glass-tethered oligonucleotide probes to target strands preannealed with labeled auxiliary oligonucleotides. Mol Biotechnol 11, 1–12 (1999). https://doi.org/10.1007/BF02789172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789172

Index Entries

Navigation