Skip to main content

Advertisement

Log in

Plant molecular biology in China: Opportunities and challenges

  • Site Specifics
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In the 21st century, mankind has witnessed great advances in life sciences, including completion of theArabidopsis thaliana genome sequence and major advances with the rice genome. But, along with global economic development, urbanization, and depletion of natural resources, many serious problems are emerging (for example, environment, food, population, energy), which reinforce the need for sustainable development in many countries and in many institutions and prompt progress in life sciences globally. Plants offer the globe its only renewable resource of food, building material, and energy. Plants have highly sophisticated, concerted, short- and long-term adaptive mechanisms to the environment. Plants have great importance in global sustainable economic development. Plant molecular biology is a most essential and powerful tool in this process. Globally, plant molecular biology research is progressing rapidly, from use of model plants to cereal crops and from cellular processes to evolutionary mechanisms. Results of these studies have value in ecosystem regulation and environmental phytoremediation. China is a large agricultural country with one-fifth of the world's population. The gap for the level of plant molecular biology research in China is large, compared with that in other developed nations. However, some Chinese laboratories (notably those of academicians Jiayang Li, Zhihong Xu, Zhensheng Li, Mengmin Hong, Qifa Zhang and professors Yonbiao Xue, Shouyi Chen, and Zhen Zhu) have kept pace with international developments in plant molecular biology. How to fully utilize plant biodiversity in China requires future advances in plant molecular biology. This minireview discusses opportunities and challenges in plant molecular biology in China, analyzes the current status of international plant molecular biology, and provides suggestions to accelerate and advance international efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott RJ (2003) Sex, sunflowers, and speciation. Science 301: 1189–1190.

    Article  PubMed  CAS  Google Scholar 

  • Al-ghazi Y, Muller B, Pinoche S, and Taylor, MN (2003) Temporal responses ofArabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signaling. Plant Cell Eviron 26: 1053–1066.

    Article  CAS  Google Scholar 

  • Arpart AB and Wilkins TA (2003). Gene expression analysis of cottonPilose mutant with altered fibre characteristics. Plant Animal Genome Conf XI, 2003 January 11–15, San Diego, CA, USA, pp 237–267.

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, and Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interaction. Science 301: 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL (2003) Stress under the sun: spotlight on ultraviolet-B responses. Plant Physiol 132: 1725–1727.

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz FA (2001) Plant biology in the future. Proc Natl Acad Sci USA 98: 5441–5445.

    Article  PubMed  CAS  Google Scholar 

  • Buell CR (2002) Current status of the sequence of the rice genome and prospects for finishing the first monocot genome. Plant Physiol 130: 1585–1586.

    Article  PubMed  CAS  Google Scholar 

  • Casati P and Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132: 1768–1769.

    Article  Google Scholar 

  • Casson SA and Lindsey K (2003) Genes and signaling in root development. New Phytol 158: 11–34.

    CAS  Google Scholar 

  • Chandler VL and Brendel V (2002) The maize genome sequencing project. Plant Physiol 130: 1594–1597.

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Maroco J, and Pereira J (2003) Understanding plant responses to drought— from genes to the whole plant. Funct Plant Biol 30: 239–264.

    Article  CAS  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, and Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130: 1598–1605.

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC and Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2004) Journey to the center of the genome: complete sequence of the rice chromosome 8 centromere. Plant Cell 16: 789–791.

    Article  CAS  Google Scholar 

  • Editor's choice (2003) The national plant genomics initiative: objectives for 2003–2008. Plant Physiol 130: 1741–1744.

    Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Gesch RW, Kang IH, Gallo-Meagher M, Gorte TH, and Frank MN (2004) Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature. Plant Cell Environ 26: 32–43.

    Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, and Ohlrogge J (2000) Microarray analysis of developingArabidopsis seeds. Plant Physiol 124: 1570–1581.

    Article  PubMed  CAS  Google Scholar 

  • Guo PG, Bai GH, Carver B, Wang DH, and Zhang LM (2003) Profiling expression of aluminum-tolerance genes in wheat through microarrays. Plant Animal Genome Conf XI, 2003 January 11–15, San Diego, CA, USA, pp 265–275.

  • Han B and Xue YB (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6: 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Huang JK, Rozelle S, Pray C, and Wang QF (2002) Plant biotechnology in China. Science 295: 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Basha SM, and Holbrook CC (2001) Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Eur J Biol 4: 59–67.

    Google Scholar 

  • Jiang MY and Zhang JH (2004) Abscisic acid and antioxidant defense in plant cells. Acta Bot Sin 46: 1–9.

    CAS  Google Scholar 

  • Kim HJ and Triplett BA (2001) Cotton fibre growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M and Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Prasad V, Yang PT, and John WK (2003) Transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26: 1181–1190.

    Article  CAS  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, and Li J (2003) Control of tillering in rice. Nature 422: 618–621.

    Article  PubMed  CAS  Google Scholar 

  • Liu DJ (2002) Genome analysis in wheat breeding for disease resistance. Acta Bot Sin 44: 96–104.

    Google Scholar 

  • Lockhart DJ and Winzeler EA (2000) Genomics, gene expression, and DNA arrays. Nature 405: 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Ribaut JM, Trethowan R, White TJ, and Ribdon MN (2002) Progress in the genetic engineering of wheat for water-limited conditions. Japan International Research Center for Agricultural Sciences (JIRCAS) Working Rep pp 55–60.

  • Raghavendra A, Vishnu Sane P, and Mohanty P (2003) Photosynthesis research in India: transition from yield physiology to molecular biology. Photosynthesis Res 76: 435–450.

    Article  CAS  Google Scholar 

  • Rhee SY (2000) Bioinformatic resources, challenges, and opportunities usingArabidopsis as a model organism in a post-genomic era. Plant Physiol 124: 1460–1464.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, and Yu G (2000)Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2109.

    Article  PubMed  CAS  Google Scholar 

  • Rizhisky L, Liang HJ, and Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130: 1143–1157.

    Article  Google Scholar 

  • Roberts JKM (2002) Proteomics and a future generation of plant molecular biologists. Plant Mol Biol 48: 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr. (1998) Genome sequencing and informatics: new tools for biochemical discoveries. Plant Physiol 117: 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48: 21–37.

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, and Shinozaki K (2001) Monitoring the expression pattern of 1300Arabidopsis genes under drought and cold stresses by using full-length cDNA microarray. Plant Cell 13: 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Shao HB (1993) The Developing Frontier and Perspective of Molecular Biology, 1993, pp. 88–116, Agricultural Sci-tech Press, Beijing.

    Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2003a) Roles of ABA during seed development and maturation of higher plants. For Studies China 5: 35–44.

    Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2003b) Molecular biology and biotechnological measures for improving the ecoenvironment of Loess Plateau in China. Trans CSAE 19: 19–24.

    Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2004a) Impacts of transgenic crops on ecoenvironment and their trend. Trans CSAE 20: 42–51.

    Google Scholar 

  • Zhao HB, Liang ZS, and Wang BC (2004b) Changes of some physiological and biochemical indices for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surfaces B: Biointerfaces 42: 107–113.

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA, and Wang BC (2005a) Investigation on the physiological and molecular mechanism of effects from PEG-6000 during the in vitro responses of barley mature embryos. Colloids Surfaces B: Biointerfaces 41: 72–77.

    Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2005b) Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at tillering stage. J Sci Food Agric 86 (in press).

  • Shao HB, Liang ZS, and Shao MA (2005c) LEA proteins in higher plants: structure, functions, and gene regulation. Colloids Surfaces B: biointerfaces 45: 131–135.

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2005d) Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes through life circle at soil water deficits. Colloids Surfaces B: Biointerfaces 42: 187–195.

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, and Shao MA (2005e) Adaptation of higher plants to stress environment and stress signal transduction. Acta Ecol Sin 25: 1772–1781.

    CAS  Google Scholar 

  • Sharp RE, Bohnert HJ, Davis GL, Wu TP, and Groodman MN (2003) Root growth maintenance during water deficits: physiology to functional genomics. Plant Animal Genome Conf XI, 2003 January 11–15, San Diego, CA, USA pp 5–12.

  • Shinozaki K and Dennis ES (2003) Cell signaling and gene regulation global analysis of signal transduction and gene expression profiles. Curr Opin Plant Biol 6: 405–409.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, and Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6: 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldinl A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, and Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVAY 1 gene. Plant Sci 156: 227–233.

    Article  Google Scholar 

  • Soltis DE and Soltis PS (2003) The role of phylogenetics in comparative genetics. Plant Physiol 132: 1790–1800.

    Article  PubMed  CAS  Google Scholar 

  • Somerville C and Dangl J (2000) Plant biology in 2010. Science 290: 2077–2078.

    Article  PubMed  CAS  Google Scholar 

  • Sopory SK and Maheshwari SC (2004) Plant molecular biology in India—the beginnings. Curr Sci 80: 270–279.

    Google Scholar 

  • Talame V, Ozturk, N, Bohnert HJ, Moris, LN, and Charles PN (2003) Microarray analysis of transcript abundance in barley under conditions of water deficit. Plant Animal Genome Conf XI, 2003 Janury 11–15, San Diego, CA, USA, pp 15–24.

  • Tardieu F (2003) Virtual plants: modeling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (2002a) Presidential address to the 10th Congress of the International Association for Plant Tissue Culture and Biotechnology (IAPTC&B), 2002 June 23–28, Florida, CA, USA, pp 1–18.

  • Vasil IK (2002b) Turning point articles: the wanderings of a botanist. In Vitro Cell Dev Biol-Plant 38: 383–395.

    Article  Google Scholar 

  • Vasil IK (2003) The science and politics of plant biotechnology—a personal perspective. Nat Biotechnol 21: 849–851.

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, and Vasil IK (1992) Herbicide resistance fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic calli. Bio/Technology 10: 667–674.

    Article  CAS  Google Scholar 

  • Wisman E and Ohlrogge J (2000)Arabidopsis microarray service facilities. Plant Physiol 124: 1468–1471.

    Article  PubMed  CAS  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, and Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419.

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger SD and Difazio SP (2003) Emerging use of, gene expression microarrays in plant physiology. Comp Funct Genom 4: 216–224.

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, and Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA 1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249–257.

    PubMed  CAS  Google Scholar 

  • Yu SW and Tang KX (2004) MAP kinase cascades responding to environmental stress in plants. Acta Bot Sin 46: 127–136.

    CAS  Google Scholar 

  • Zhao FY, Guo SL, Wang ZL, Wang GH, Zhang H, and Tian H (2003) Recent advances in study on transgenic plants for salt tolerance. J Plant Physiol Mol Biol 29: 171–178.

    CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Zhu T (2003) Global analysis of gene expression using GeneChip microarrays. Curr Opin Plant Biol 6: 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Budworth P, Chen WQ, Zhang WH, and White TP (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotech J 1: 59–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Shao.

Additional information

These authors contributed to this paper equally.

Editorial note: This paper, with minor editing, is as it was presented by the authors at the Genetics Advancing Meeting of the Chinese Society of Genetics, Xiamen University, China, 13–17 May 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, H., Chu, L. Plant molecular biology in China: Opportunities and challenges. Plant Mol Biol Rep 23, 345–358 (2005). https://doi.org/10.1007/BF02788883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788883

Keywords

Navigation