Skip to main content
Log in

Ergodic averages on spheres

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetU 1,U 2, …,U n denoten commuting ergodic invertible measure preserving flows on a probability space (X,Σ,m). LetS r denote the sphere of radiusr inR n, and αr the rotationally invariant unit measure onS r. WriteU tx to denote\(U_1^{t_1 } ...U_n^{t_n } x\) x wheret=(t 1 …,tn). Define the ergodic averaging operator\(S_r f\left( x \right) = \int_{S_r } f \left( {U^t x} \right)d\sigma _r (t)\). This paper shows that these averages converge for eachfL p(X), p>n/(n−1), n≥3. This is closely related to the work on differentiation by E. M. Stein, S. Wainger, and others. Because of their work, the necessary maximal inequality transfers quite easily. The difficulty is to show that we have convergence on a dense subspace. This is done with the aid of a maximal variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain,Averages in the plane over convex curves and maximal operators, J. Analyse Math.47 (1986), 69–85.

    MATH  MathSciNet  Google Scholar 

  2. A. P. Calderón,Ergodic theory and translation invariant operators, Proc. Natl. Acad. Sci. U.S.A.59 (1968), 349–353.

    Article  MATH  Google Scholar 

  3. A. del Junco and J. Rosenblatt,Counterexamples in ergodic theory and number theory, Math. Ann.247 (1979), 185–197.

    Article  Google Scholar 

  4. E. Landau,Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z.20 (1924), 126–132.

    Article  MathSciNet  Google Scholar 

  5. D. A. Lind,Locally compact measure preserving flows, Advances in Math.15 (1975), 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. M. Stein,Maximal functions: Spherical means, Proc. Natl. Acad. Sci. U.S.A.73 (1976), 2174–2175.

    Article  MATH  Google Scholar 

  7. E. M. Stein and S. Wainger,Problems in harmonic analysis related to curvature, Bull. Am. Math. Soc.84 (1978), 1239–1295.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. M. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  9. A. A. Tempelman,Ergodic theorems for general dynamical systems, Tr. Mosk. Mat. Obšč.26 (1972), 95–132 (in Russian). English Transl.: Trans. Moscow Math. Soc.26 (1972), 94–132.

    MathSciNet  Google Scholar 

  10. S. Wainger,Averages and singular integrals over lower dimensional sets, inBeijing Lectures in Harmonic Analysis, E. M. Stein (ed.), Annals of Math. Studies 112, Princeton University Press, 1986, pp. 357–421.

  11. A. Walfisz,Gitterpunkte in Mehrdimensionalen Kugeln, Panstwowe Wydawnictwo Naukowe, Warszawa, 1957.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant DMS-8910947.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.L. Ergodic averages on spheres. J. Anal. Math. 61, 29–45 (1993). https://doi.org/10.1007/BF02788837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788837

Keywords

Navigation