Skip to main content
Log in

Temporal Distributional Limit Theorems for Dynamical Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Suppose \(\{T^t\}\) is a Borel flow on a complete separable metric space X, \(f:X\rightarrow \mathbb R\) is Borel, and \(x\in X\). A temporal distributional limit theorem is a scaling limit for the distributions of the random variables \(X_T:=\int _0^t f(T^s x)ds\), where t is chosen randomly uniformly from [0, T], x is fixed, and \(T\rightarrow \infty \). We discuss such laws for irrational rotations, Anosov flows, and horocycle flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1(2), 193–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aaronson, J., Nakada, H., Sarig, O., Solomyak, R.: Invariant measures and asymptotics for some skew products. Israel J. Math. 128, 93–134 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aaronson, J., Weiss, B.: Remarks on the tightness of cocycles. Colloq. Math. 84–85(2), 365–376 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Avila, A., Dolgopyat, D., Duryev, E., Sarig, O.: The visits to zero of a random walk driven by an irrational rotation. Israel J. Math. 207(2), 653–717 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babillot, M., Peigné, M.: Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps. Bull. Soc. Math. Fr. 134(1), 119–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J.: Randomness of the square root of 2 and the giant leap, part 1. Period. Math. Hungar. 60(2), 137–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, J.: Randomness of the square root of 2 and the giant leap, Part 2. Period. Math. Hungar. 62(2), 127–246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowen, R.: Markov partitions for Axiom \({\rm {A}}\) diffeomorphisms. Am. J. Math. 92, 725–747 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429–460 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29(3), 181–202 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bressaud, X., Bufetov, A.I.: Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1. Proc. Lond. Math. Soc. 109(2), 483–522 (2014)

  12. Brosamler, G.A.: An almost everywhere central limit theorem. Math. Proc. Camb. Philos. Soc. 104(3), 561–574 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bufetov, A., Forni, G.: Limit theorems for horocycle flows. Ann. Sci. Éc. Norm. Supér. 47(5), 851–903 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Bufetov, A.I.: Limit theorems for translation flows. Ann. Math. 179(2), 431–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burton, R., Denker, M.: On the central limit theorem for dynamical systems. Trans. Am. Math. Soc. 302(2), 715–726 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chazottes, J.-R., Collet, P.: Almost-sure central limit theorems and the Erdös-Rényi law for expanding maps of the interval. Ergod. Theory Dyn. Syst. 25(2), 419–441 (2005)

  17. Chazottes, J.-R., Gouëzel, S.: On almost-sure versions of classical limit theorems for dynamical systems. Probab. Theory Relate. Fields 138(1–2), 195–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chernov, N.I.: Limit theorems and Markov approximations for chaotic dynamical systems. Probab. Theory Relat. Fields 101(3), 321–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Conze, J.-P., Keane, M.: Ergodicité d’un flot cylindrique. In Séminaire de Probabilités, I (Univ. Rennes, Rennes, 1976). Exp. No. 5, p. 7. Départment of Mathematics Information, Université de Rennes, Rennes (1976)

  20. Cornfeld, I.P., Fomin, S.V. Sinai, Y.G.: Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the Russian by A. B. Sosinskii, Springer, New York (1982)

  21. Denker, M., Kabluchko, Z.: An Erdös-Rényi law for mixing processes. Probab. Math. Stat. 27(1), 139–149 (2007)

    MATH  Google Scholar 

  22. Denker, M., Philipp, W.: Approximation by Brownian motion for Gibbs measures and flows under a function. Ergod. Theory Dyn. Syst. 4(4), 541–552 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356(4), 1637–1689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dolgopyat, D., Fayad, B.: Limit theorems for toral translations. In Hyperbolic dynamics, fluctuations and large deviations, volume 89 of Proceedings of Symposia in Pure Mathematic, pp. 227–277. American Mathematical Society, Providence, RI (2015)

  25. Dolgopyat, D., Goldsheid, I.: Quenched limit theorems for nearest neighbour random walks in 1D random environment. Commun. Math. Phys. 315(1), 241–277 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dolgopyat, D., Sarig, O.: Beck theorem for numbers of bounded type. In preparation

  27. Dolgopyat, D., Sarig, O.: Windings of horocycle flows. In preparation

  28. Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21(3), 653–660 (1976)

    MathSciNet  MATH  Google Scholar 

  29. Enriquez, N., Franchi, J., Le Jan, Y.: Stable windings on hyperbolic surfaces. Probab. Theory Relat. Fields 119(2), 213–255 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Enriquez, N., Le Jan, Y.: Statistic of the winding of geodesics on a Riemann surface with finite area and constant negative curvature. Rev. Mat. Iberoam. 13(2), 377–401 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erdös, P., Kac, M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  32. Erdos, P., Renyi, A.: On a new law of large numbers. J. Anal. Math. 23, 103–111 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fisher, Albert: Convex-invariant means and a pathwise central limit theorem. Adv. Math. 63(3), 213–246 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Flaminio, L., Forni, G.: Invariant distributions and time averages for horocycle flows. Duke Math. J. 119(3), 465–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pytheas Fogg, N.: In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics. Springer, Berlin (2002)

    Chapter  Google Scholar 

  36. Golosov, A.O.: Localization of random walks in one-dimensional random environments. Commun. Math. Phys. 92(4), 491–506 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. In: Hyperbolic Dynamics, Fluctuations and Large Deviations, Proceedings of Symposia in Pure Mathematics, vol. 89, pp. 161–193. American Mathematical Society, Providence, RI (2015)

  38. Griffin, J., Marklof, J.: Limit theorems for skew translations. J. Mod. Dyn. 8(2), 177–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guivarc’h, Y., Le Jan, Y.: Sur l’enroulement du flot géodésique. C. R. Acad. Sci. Paris Sér. I Math. 311(10), 645–648 (1990)

    MathSciNet  MATH  Google Scholar 

  40. Hooper, P.W., Hubert, P., Weiss, B.: Dynamics on the infinite staircase. Discrete Contin. Dyn. Syst. 33(9), 4341–4347 (2013)

  41. Hooper, P.W., Weiss, B.: Generalized staircases: recurrence and symmetry. Ann. Inst. Fourier (Grenoble) 62(4), 1581–1600 (2012)

  42. Huveneers, F.: Subdiffusive behavior generated by irrational rotations. Ergo.c Theory Dyn. Syst. 29(4), 1217–1233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kesten, H.: Uniform distribution \({\rm {mod}}\,1\). Ann. Math. 2(71), 445–471 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lacey, M.T.: On central limit theorems, modulus of continuity and Diophantine type for irrational rotations. J. Anal. Math. 61, 47–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lacey, M.T., Philipp, W.: A note on the almost sure central limit theorem. Stat. Probab. Lett. 9(3), 201–205 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Le Borgne, S.: Principes d’invariance pour les flots diagonaux sur \({\rm {SL}}(d,{\mathbb{R}})/{\rm {SL}}(d,{\mathbb{Z}})\). Ann. Inst. H. Poincaré Probab. Stat. 38(4), 581–612 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. Le Jan, Y.: Sur l’enroulement géodésique des surfaces de Riemann. C. R. Acad. Sci. Paris Sér. I Math. 314(10), 763–765 (1992)

    MathSciNet  Google Scholar 

  48. Le Jan, Y.: The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature. Duke Math. J. 74(1), 159–175 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liverani, C.: Central limit theorem for deterministic systems. In: International Conference on Dynamical Systems (Montevideo, 1995), Pitman Research Notes in Mathematics Series, vol. 362, pp. 56–75. Longman, Harlow (1996)

  50. Marklof, J.: Almost modular functions and the distribution of \(n^2x\) modulo one. Int. Math. Res. Not. 39, 2131–2151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nakada, H.: On a classification of PL-homeomorphisms of a circle. In: Probability Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Mathematics., vol. 1021, pp. 474–480. Springer, Berlin (1983)

  52. Paquette, E., Son, Y.: Birkhoff sum fluctuations in substitution dynamical systems. arXiv:1505.01428, preprint (2015)

  53. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–268, 268 (1990)

    MathSciNet  MATH  Google Scholar 

  54. Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Am. Math. Soc. 161(2), 61–140 (1975)

    MathSciNet  MATH  Google Scholar 

  55. Pollicott, M., Sharp, R.: Asymptotic expansions for closed orbits in homology classes. Geom. Dedic. 87(1–3), 123–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Prasolov, V.V.: Elements of homology theory, Graduate Studies in Mathematics. vol. 81, American Mathematical Society, Providence, RI (2007). Translated from the 2005 Russian original by Olga Sipacheva

  57. Ratner, M.: The central limit theorem for geodesic flows on \(n\)-dimensional manifolds of negative curvature. Israel J. Math. 16, 181–197 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rootzén, H.: Fluctuations of sequences which converge in distribution. Ann. Probab. 4(3), 456–463 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ruelle, D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  60. Schatte, P.: On strong versions of the central limit theorem. Math. Nachr. 137, 249–256 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  61. Schmidt, K.: Cocycles on Ergodic Transformation Groups. Macmillan Lectures in Mathematics. Macmillan Company of India, Delhi (1977)

    MATH  Google Scholar 

  62. Schmidt, K.: A cylinder flow arising from irregularity of distribution. Compos. Math. 36(3), 225–232 (1978)

    MathSciNet  MATH  Google Scholar 

  63. Sinai, Y.G.: The central limit theorem for geodesic flows on manifolds of constant negative curvature. Sov. Math. Dokl. 1, 983–987 (1960)

    MathSciNet  MATH  Google Scholar 

  64. Sinai, Y.G.: Markov partitions and U-diffeomorphisms. Funkc. Anal. i Prilozhen 2(1), 64–89 (1968)

    MathSciNet  MATH  Google Scholar 

  65. Sinai, Y.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk. 27(4), 21–64 (1972)

    MathSciNet  MATH  Google Scholar 

  66. Sinai, Y.G.: The limit behavior of a one-dimensional random walk in a random environment. Teor. Veroyatnost. i Primenen. 27(2), 247–258 (1982)

    MathSciNet  Google Scholar 

  67. Stewart, M.: Irregularities of uniform distribution. Acta Math. Acad. Sci. Hungar. 37(1–3), 185–221 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tenenbaum, G.: Introduction to analytic and probabilistic number theory, volume 163 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 3rd edn., (2015). Translated from the 2008 French edition by Patrick D. F. Ion

  69. Thouvenot, J.-P., Weiss, B.: Limit laws for ergodic processes. Stoch. Dyn. 12(1), 1150012 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Weiss, B.: Single orbit dynamics. CBMS Regional Conference Series in Mathematics, vol. 95. American Mathematical Society, Providence, RI (2000)

Download references

Acknowledgements

The authors wish to thank Giovanni Forni for explaining to us the material of Sect. 5.2, Pat Hooper and Barak Weiss for explaining to us the material of Appendix 1, and Yuval Peres and Ofer Zeitouni for useful suggestions and fruitful discussions. The first author acknowledges support by NSF, the second author acknowledges support by Israel Science Foundation Grant 199/14

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Dolgopyat.

Additional information

Dedicated to D. Ruelle and Y. Sinai on the occasion of their 80th birthdays.

Appendices

Appendix 1: Veech Group of the Cylinder Suspension

Here we prove Proposition 4.2. We do this in two steps. First we construct many automorphisms \(\psi :M\rightarrow M\), and then we show using the methods of [41] that they lift to automorphisms \(\widetilde{\psi }:\widetilde{M}\rightarrow \widetilde{M}\).

1.1 The Automorphisms of M

Lemma 8.1

Let \(\Gamma (q):=\{A\in \mathrm {SL}(2,\mathbb Z):A=I\mod q\}\). For every \(A\in \Gamma (q)\) there exists a linear automorphism \(\psi :M_0\rightarrow M_0\) which fixes \(\bullet , \circ \), and has derivative A. Necessarily, \(\psi |_M\) is an automorphism of M.

Proof

Every matrix \(A\in \mathrm {SL}(2,\mathbb Z)\) determines an automorphism \(\psi :\mathbb R^2/\mathbb Z^2\rightarrow \mathbb R^2/\mathbb Z^2\) which fixes \(\bullet \) and has derivative A: Take \(\psi ({x\atopwithdelims ()y}+\mathbb Z^2)=A{x\atopwithdelims ()y}+\mathbb Z^2.\) This automorphism fixes \(\circ \) iff

$$\begin{aligned} A{p/q\atopwithdelims ()0}\in {p/q\atopwithdelims ()0}+\mathbb Z^2\ , \ A^{-1}{p/q\atopwithdelims ()0}\in {p/q\atopwithdelims ()0}+\mathbb Z^2. \end{aligned}$$
(8.1)

Write \(A=\bigl ({\tiny \begin{array}{cc} a &{} b \\ c &{} d \end{array}}\bigr )\), \(A^{-1}=\bigl ({\tiny \begin{array}{rr} d &{} -b \\ -c &{} a \end{array}}\bigr )\), then (8.1) holds iff \(\frac{ap}{q}\in \frac{p}{q}+\mathbb Z\), \(\frac{cp}{q}\in \mathbb Z\), \(\frac{dp}{q}\in \frac{p}{q}+\mathbb Z\), \(\frac{-cp}{q}\in \mathbb Z\). This is equivalent to

$$\begin{aligned} a=1(\mod q),\quad d=1(\mod q),\quad c=0(\mod q). \end{aligned}$$

In particular, if \(A\in \Gamma (q)\), then \(\psi :M_0\rightarrow M_0\) fixes \(\bullet ,\circ \) and has derivative A. \(\square \)

1.2 Lifting the Automorphisms of M to \(\widetilde{M}\)

Theorem 8.2

(Hooper-Weiss) Let \(M,\widetilde{M}\) be as above, then every automorphism of M fixing \(\bullet ,\circ \) lifts to an automorphism of \(\widetilde{M}\).

Theorem 8.2 can be easily deduced from general results in [41], but we decided to include a self-contained proof for completeness. The following proof, which uses the methods of [41], was explained to us by Pat Hooper and Barak Weiss.

First we give a general criterion for liftability of maps of M to maps of \(\widetilde{M}\), and then we check this criterion for automorphisms.

Suppose \(\psi :M\rightarrow M\) is a homeomorphism which fixes some point \(x_0\), and fix some lift \(\widetilde{x}_0\in \widetilde{M}\). For every \(\widetilde{x}\in \widetilde{M}\):

  1. (a)

    Choose a smooth path \(\widetilde{\gamma }_{\widetilde{x}}(t)\) from \(\widetilde{x}_0\) to \(\widetilde{x}\);

  2. (b)

    Form the curve \(\psi \circ p\circ \widetilde{\gamma }_{\widetilde{x}}\). This is a smooth path from \(x_0\) to \(\psi (p(\widetilde{x}))\);

  3. (c)

    Let \(\widetilde{\psi }(\widetilde{x}):=\)endpoint of the lift of \(\psi \circ p \circ \widetilde{\gamma }_{\widetilde{x}}\) to \(\widetilde{M}\) at \(\widetilde{x}_0\).

If we can show that \(\widetilde{\psi }(\widetilde{x})\) is independent of the choice of \(\widetilde{\gamma }_{\widetilde{x}}\), then it will be a simple matter to conclude that \(\widetilde{\psi }:\widetilde{M}\rightarrow \widetilde{M}\) is a continuous map such that \(p\circ \widetilde{\psi }=\psi \circ p\).

To see that this lift is invertible, we repeat the procedure for \(\psi ^{-1}\), to obtain a continuous map \(\widetilde{\psi ^{-1}}\) such that \(p\circ \widetilde{\psi ^{-1}}=\psi ^{-1}\circ p\). So \(p\circ \widetilde{\psi ^{-1}}\circ \widetilde{\psi }=p\), whence for every \(\widetilde{x}\in \widetilde{M}\) there is a \(k(\widetilde{x})\in \mathbb Z\) such that \((\widetilde{\psi ^{-1}}\circ \widetilde{\psi })(\widetilde{x})=D^{k(\widetilde{x})}(x)\), where D is a generator for the group of deck transformations. Since \(\widetilde{\psi ^{-1}}\circ \widetilde{\psi }\) is continuous and \(\widetilde{M}\) is connected, \(k={{\mathrm{const}}}\). It follows that \(D^{-k}\circ \widetilde{\psi ^{-1}}\) is the inverse of \(\widetilde{\psi }\).

This general discussion reduces the problem of lifting \(\psi :M\rightarrow M\) to a map on \(\widetilde{M}\) to checking that the endpoint of the lift of \(\psi \circ p \circ \widetilde{\gamma }_{\widetilde{x}}\) to \(\widetilde{M}\) at \(\widetilde{x}_0\) is independent of the choice of \(\widetilde{\gamma }_{\widetilde{x}}\). Here is an obvious necessary and sufficient condition:

1.3 Liftability Criterion

Let \(\gamma \) be a closed smooth loop in M which lifts to a closed loop in \(\widetilde{M}\) , then \(\psi \circ \gamma \), \(\psi ^{-1}\circ \gamma \) lift to closed loops in \(\widetilde{M}\).

Let \(\alpha ,\beta \) denote the linear segments on M connecting \(\bullet \) to \(\circ \) with parameterizations \(\alpha (t)={t\atopwithdelims ()1}\) \((0<t<p/q)\) , \(\beta (t)={t\atopwithdelims ()1}\) \((p/q<t<1)\).

We call a smooth path \(\gamma \) on M proper, if it intersects \(\alpha ,\beta \) at most finitely many times, and all these intersections (if any) are transverse.

For such paths we can define the intersection numbers \(i(\alpha ,\gamma ), i(\beta ,\gamma )\) which count the points in \(\gamma \cap \alpha \) (resp. \(\gamma \cap \beta \)) with signs \(+,-\) according to the orientation of the ordered pair \(\varvec{\langle }\alpha ^\prime ,\gamma ^\prime \varvec{\rangle }\) (resp. \(\varvec{\langle }\beta ^\prime ,\gamma ^\prime \varvec{\rangle }\)).

Lemma 8.3

A closed proper path \(\gamma \) on M lifts to a closed path on \(\widetilde{M}\) iff \( (q-p)\cdot i(\gamma ,\alpha )-p\cdot i(\gamma ,\beta )=0 \)

Proof

Let \(\gamma \) be a closed proper path on M, and \(\widetilde{\gamma }\) its lift to \(\widetilde{M}\). Let \(t_1<\cdots <t_N\) denote the times \(\gamma \) intersects \(\alpha \cup \beta \). Let \(\sigma _i\) denote the sign of the intersection of \(\gamma ,\alpha \cup \beta \) at time \(t_i\).

Every intersection with \(\alpha \) increases the index of the square containing \(\widetilde{\gamma }(t_i)\) by \(\sigma _i(q-p)\). Every intersection of \(\gamma \) with \(\beta \) decreases the index of the square containing \(\widetilde{\gamma }(t_i)\) by \(\sigma _i p\). The lifted loop closes iff the total change is zero. \(\square \)

Lemma 8.4

Let \(H_1(M_0,P,\mathbb Z)\) be the relative homology group, where \(P=\{\bullet ,\circ \}\). Let \(\omega \) denote a (non-closed!) smooth path connecting \(\bullet \) and \(\circ \) (e.g. \(\alpha ,\beta \)).

  1. (a)

    For all proper loops \(\gamma \) in M, \(i(\omega ,\gamma )\) only depends on the homology classes \([\![\omega [\!],[\![\gamma [\!]\in H_1(M_0,P,\mathbb Z)\).

  2. (b)

    \(i(\cdot ,\cdot )\) is bilinear on \(H_1(M_0,P,\mathbb Z)\times H_1(M_0,P,\mathbb Z)\).

  3. (c)

    If \(\psi :M_0\rightarrow M_0\) is a diffeomorphism which fixes \(\bullet ,\circ \) and \(\gamma , \psi ^{\pm 1}\circ \gamma \) are proper, then \(i(\psi ^{\pm 1}\circ \omega ,\psi ^{\pm 1}\circ \gamma )={\pm \sigma \cdot i(\omega ,\gamma )}\) where \(\sigma =1\) when \(\psi \) preserves orientation, and \(\sigma =-1\) if it doesn’t.

Proof

We think of \(M_0\) as of a simplicial complex. Form the space \(M^*:=M_0\uplus CP\) where CP is a cone over P. In our case this means that we attach to M a path from \(\bullet \) to \(\circ \) which does not intersect M. Then \(\alpha \) is a part of a loop \(\alpha ^*\) in \(M^*\) and for every proper path \(\gamma \subset M\), \(i(\alpha ,\gamma )=i(\alpha ^*,\gamma )\).

Denote the homology classes in \(H_1(M^*,\mathbb Z)\) by \([\![\cdot ]\!]\). By [56], p. 43, \(i(\alpha ^*,\gamma )\) only depends on the (absolute) homology classes \([\alpha ^*],[\gamma ]\in H_1(M^*,\mathbb Z)\). By [56], p. 13, these classes only depend on the relative homology classes \([\![\alpha ]\!],[\![\gamma ]\!]\in H_1(M_0,P,\mathbb Z)\). This proves part (a). Parts (b) and (c) are immediate. \(\square \)

Lemma 8.5

Suppose \(\psi :M_0\rightarrow M_0\) is an automorphism which fixes \(\bullet ,\circ \), and let \(\psi _*:H_1(M_0,P,\mathbb Z)\rightarrow H_1(M_0,P,\mathbb Z)\) denote the homomorphism it induces. Let

$$\begin{aligned} \,[\![\omega ]\!]:=q(q-p)[\![\alpha ]\!]-pq[\![\beta ]\!]\in H_1(M_0,P,\mathbb Z), \end{aligned}$$

then there are \(0\ne m,n\in \mathbb Z\) such that \(m\cdot \psi _*[\![\omega ]\!]=n\cdot [\![\omega ]\!]\).

Proof

The holonomy of a smooth path \(\gamma \) in M is defined to be the vector \(\text {hol}(\gamma )={\text {hol}_x(\gamma )\atopwithdelims ()\text {hol}_y(\gamma )}\in \mathbb R^2\) given by

$$\begin{aligned} \text {hol}(\gamma ):=\text {endpoint}(\widetilde{\gamma })-\text {beginning}(\widetilde{\gamma }) \end{aligned}$$

for some (any) lift \(\widetilde{\gamma }\) of \(\gamma \) to \(\mathbb R^2\).

Two homotopic paths have the same holonomy. Therefore, \(\text {hol}\) defines a homomorphism \(\pi _1(M,x_0)\rightarrow \mathbb Z\). Since \(\mathbb Z\) is abelian, \(\text {hol}(\gamma )\) defines a homomorphism \(\text {hol}:H_1(M,\mathbb Z)\rightarrow \mathbb Z\).

We now work in simplicial homology. If \([\![\gamma ]\!]\in H_1(M_0,P,\mathbb Z)\) equals zero, then \(\gamma =\partial c+c_p\) where c is a finite linear combination of 2-cells in M and \(c_p\) is zero or a finite linear combination of 1-cells in P. Since \(P=\{\bullet ,\circ \}\), there are no 1-cells in P, so \(c_p=0\) and \(\gamma \) is homologous to zero. So \(\text {hol}(\gamma )=\vec {0}\). We see that \([\![\gamma ]\!]=0\) implies that \(\text {hol}(\gamma )=\vec {0}\).

It follows that \(\text {hol}\) determines a homomorphism \(\text {hol}:H_1(M_0,P,\mathbb Z)\rightarrow \mathbb Q\). The range of values is \(\mathbb Q\), because absolute cycles in \(M_0\) have integral holonomies, and paths connecting \(\bullet \) to \(\circ \) have rational holonomies.

Calculating, we find that \(\text {hol}([\![\omega ]\!])=(q-p)\cdot \frac{p}{q}\vec {e}_1-p\cdot \frac{q-p}{q}\vec {e}_1=\vec {0}\), and \(\text {hol}(\psi _*[\![\omega ]\!])=d\psi \bigl (\text {hol}([\![\omega ]\!])\bigr )=\vec {0}\) (here we use the fact that \(\psi \) has constant derivative). Thus

$$\begin{aligned} \,[\![\omega ]\!], \psi _*[\![\omega ]\!]\in W:=\{[\![\gamma ]\!]\in H_1(M_0,P,\mathbb Z): \text {hol}([\![\gamma ]\!])=\vec {0}\}. \end{aligned}$$

The plan now is to show that W spans a one-dimensional linear vector space over \(\mathbb Q\). This implies that \(\exists m,n\in \mathbb Z\setminus \{0\}\) s.t. \(m\cdot [\![\omega ]\!]=n\cdot \psi _*[\![\omega ]\!]\).

Step 1 \(\exists [\![\gamma _1]\!],[\![\gamma _2]\!],[\![\gamma _3]\!]\) s.t. \(H_1(M_0,P,\mathbb Z)={{\mathrm{span}}}_\mathbb Z\{[\![\gamma _1]\!],[\![\gamma _2]\!],[\![\gamma _3]\!]\}\).

Proof The long exact sequence for relative homology states the existence of homomorphisms abcd such that the following sequence is exact ([56], p. 13):

$$\begin{aligned} \cdots \rightarrow H_1(P)\xrightarrow []{} H_1(M_0)\xrightarrow []{a} H_1(M_0,P)\xrightarrow []{b} H_0(P)\xrightarrow []{c} H_0(M_0)\xrightarrow []{d} H_0(M_0,P) \end{aligned}$$

In our case \(H_1(P)=0\), \(H_1(M_0)=H_1(\mathbb T^2)=\mathbb Z^{2}\), \(H_0(P)=\mathbb Z^2\), \(H_0(M_0)=\mathbb Z\), and \(H_0(M_0,P)=0\) (see e.g. [56], pp. 3, 4, 12, 39), so

$$\begin{aligned} 0\rightarrow \mathbb Z^2\xrightarrow []{a} H_1(M_0,P)\xrightarrow []{b} \mathbb Z^2\xrightarrow []{c}\mathbb Z\xrightarrow []{d} 0\text { is exact}. \end{aligned}$$

We now chase arrows. Since \(\ker (d)=\mathbb Z\), \(c:\mathbb Z^2\rightarrow \mathbb Z\) is onto, so \(\ker (c)\cong \mathbb Z\). So \(\text {Im}(b)\cong \mathbb Z\). Choose \([\![\gamma _1]\!]\in H_1(M_0,P)\) such that \(b[\![\gamma _1]\!]\) generates \(\text {Im}(b)\). Next by exactness, \(a:\mathbb Z^2\rightarrow H_1(M_0,P)\) is one-to-one so there are \([\![\gamma _2]\!]\), \([\![\gamma _3]\!]\in H_1(M_0,P)\) which generate \(\text {Im}(a)=\text {ker}(b)\).

For every \([\![\xi ]\!]\in H_1(M_0,P,\mathbb Z)\) there is \(k\in \mathbb Z\) s.t. \(b[\![\xi ]\!]=k\cdot b[\![\gamma _1]\!]\). So \([\![\xi ]\!]-k\cdot [\![\gamma _1]\!]\in \ker (b)={{\mathrm{span}}}_\mathbb Z\{[\![\gamma _2]\!],[\![\gamma _3]\!]\}\), whence \( [\![\xi ]\!]\in {{\mathrm{span}}}_\mathbb Z\{[\![\gamma _1]\!],[\![\gamma _2]\!],[\![\gamma _3]\!]\} \). Since \([\![\xi ]\!]\) was arbitrary, the step is proved.

Step 2 \(\dim {{\mathrm{span}}}_{\mathbb Q}\{\text {hol}([\![\gamma _1]\!]), \text {hol}([\![\gamma _2]\!]), \text {hol}([\![\gamma _3]\!])\}=2\).

Proof By step 1, \({{\mathrm{span}}}_\mathbb Z\{\text {hol}([\![\gamma _1]\!]), \text {hol}([\![\gamma _2]\!]), \text {hol}([\![\gamma _3]\!])\}=\text {hol}(H_1(M_0,P,\mathbb Z))\). The last set can be easily seen to equal \(\mathbb Z^2\), so it contains two vectors which are linearly independent over \(\mathbb Z\), whence also over \(\mathbb Q\).

Step 3 Completion of the proof.

By step 1, every \([\![\gamma ]\!]\in W\) equals \(\sum _{i=1}^3 a_i[\![\gamma _i]\!]\) for some \(a_i\in \mathbb Z\) which solve

$$\begin{aligned} a_1\text {hol}_x([\![\gamma _1]\!])+a_2\text {hol}_x([\![\gamma _2]\!])+a_3\text {hol}_x([\![\gamma _3]\!])&=0\\ a_1\text {hol}_y([\![\gamma _1]\!])+a_2\text {hol}_y([\![\gamma _2]\!])+a_3\text {hol}_y([\![\gamma _3]\!])&=0. \end{aligned}$$

This is a system of linear equations with rational coefficients. By step 2, the rank is two. So the space of solutions over \(\mathbb Q\) is one-dimensional over \(\mathbb Q\). In particular, \([\![\omega ]\!]=\sum _{i=1}^3 a_i[\![\gamma _i]\!]\) and \(\psi _*[\![\omega ]\!]=\sum _{i=1}^3 b_i[\![\gamma _i]\!]\) where \((a_1,a_2,a_3)\) and \((b_1,b_2,b_3)\) are linearly dependent over \(\mathbb Q\), and \(\exists m,n\in \mathbb Z\setminus \{0\}\) s.t. \(m\cdot [\![\omega ]\!]=n\cdot \psi _*[\![\omega ]\!]\). \(\square \)

Proof of Theorem 8.2 We check the liftability criterion: Let \(\gamma \) be a smooth loop in M, and suppose \(\gamma \) lifts to a closed loop in \(\widetilde{M}\). We show that \(\psi ^{\pm 1}\circ \gamma \) lift to closed loops in \(\widetilde{M}\). Obviously this property only depends on the homotopy class of \(\gamma \), so there is no loss of generality in assuming that \(\gamma ,\psi \circ \gamma \), and \(\psi ^{-1}\circ \gamma \) are proper.

Since \(\gamma \) lifts to a closed loop in \(\widetilde{M}\), \(i([\![\omega ]\!], [\![\gamma ]\!])=0\) (Lemma 8.3). Thus by Lemma 8.4(c),

$$\begin{aligned} i(\psi _*[\![\omega ]\!],[\![\psi \circ \gamma ]\!])=i([\![\psi \circ \omega ]\!],[\![\psi \circ \gamma ]\!])=\pm i([\![\omega ]\!], {[\![\gamma ]\!]})=0. \end{aligned}$$

By Lemma 8.5, there are \(m,n\in \mathbb Z\setminus \{0\}\) s.t. \(m\psi _*[\![\omega ]\!]=n[\![\omega ]\!]\), so

$$\begin{aligned} 0&= m\cdot i(\psi _*[\![\omega ]\!],[\![\psi \circ \gamma ]\!])=i(m\cdot \psi _*[\![\omega ]\!],[\![\psi \circ \gamma ]\!])=i(n\cdot [\![\omega ]\!],[\![\psi \circ \gamma ]\!])\\&= n\cdot i([\![\omega ]\!],[\![\psi \circ \gamma ]\!]), \text { whence }i([\![\omega ]\!],[\![\psi \circ \gamma ]\!])=0. \end{aligned}$$

Since \(i([\![\omega ]\!],[\![\psi \circ \gamma ]\!])=0\), \(\psi \circ \gamma \) lifts to a closed loop in \(\widetilde{M}\) (Lemma 8.3). A similar argument shows that \(\psi ^{-1}\circ \gamma \) lifts to a closed loop in \(\widetilde{M}\) as well.

We see that \(\psi \) satisfies the liftability criterion. By the discussion at the beginning of the section, \(\psi \) has an invertible continuous lift to \(\widetilde{M}\). \(\square \)

Appendix 2: Maximal Growth

To prove Theorem 5.9 we need the following fact.

Proposition 9.1

  1. (a)

    If \(0<a<||\omega ||_s\) then there is \(T_0\) such that for \(T\ge T_0\) there exists \(\vec v\) such that \({\mathcal {W}}_g(\omega , \vec v, T)>aT. \)

  2. (b)

    If \( ||\omega ||_s< a\) then there is \(T_0\) such that for \(T\ge T_0\) for all \(\vec v\) we have \({\mathcal {W}}_g(\omega , \vec v, T)<aT. \)

  3. (c)

    If \(0<a<||\omega ||_s\) then there is \(T_0\) such that for \(T\ge T_0\) there exists \(\vec v\) such that \( {\mathcal {W}}_g(\omega , \vec v, T)<-aT. \)

  4. (d)

    If \(||\omega ||_s< a\) then there is \(T_0\) such that for \(T\ge T_0\) for all \(\vec v\) we have \({\mathcal {W}}_g(\omega , \vec v, T)>-aT. \)

Proof

This proposition is well known but we sketch the proof to make the paper self contained.

  1. (a)

    Fix \({\varepsilon }>0.\) By the definition of the stable norm there is a finite set of closed curves \(\gamma _1,\) \(\gamma _2,\dots , \gamma _m\) such that

    $$\begin{aligned} \sum _{j=1}^m r_j \text {length}(\gamma _j)=1\quad \text {and}\quad \sum _{j=1}^m r_j \omega (\gamma _j)\ge ||\omega ||_s-{\varepsilon }. \end{aligned}$$

    Since geodesics minimize length in its homotopy class, we may assume, increasing \(r_j\) if necessary, that \(\gamma _j\) are geodesics. Using the specification property of geodesic flow we see that there are numbers \(n_0\) and L such that for each T there are numbers \(t_j\) and geodesic \(\Gamma \) of length T such that denoting \(n_j=[T r_j]\) we have

    $$\begin{aligned} d(\Gamma (t_j+t), \gamma _j(t))\le 1 \text { for } t\in [0, n_j-n_0], \text { and } \left| t_j-\sum _{i=1}^{j-1} n_i\right| \le L. \end{aligned}$$

    By convexity

    $$\begin{aligned} \int _\Gamma \omega =\sum _j n_j \omega (\gamma _j)+O(1). \end{aligned}$$

    Since

    $$\begin{aligned} \sum _j n_j \omega (\gamma _j)=T \sum _j r_j \omega (\gamma _j) +O(1) \end{aligned}$$

    part (a) follows.

  2. (b)

    Assume by contradiction that for every \(T_0\) there are \(T>T_0\) and \(\vec {v}\) s.t. \({\mathcal {W}}_g(\omega ,\vec {v},T)\ge aT\). Let \(\tilde{\Gamma }:=\{g^t(\vec {v}\}_{0<t<T}\), then \(\int _{\tilde{\Gamma }} \omega \ge aT\). By Anosov’s Closing Lemma there is a closed geodesic \(\Gamma \) with \(|\int _\Gamma \omega -\int _{\tilde{\Gamma }} \omega |\) bounded by a constant independent of T and \(\vec {v}\). Thus if T is sufficiently large then \( \omega ([\Gamma ]/\text {length}(\Gamma ))\ge a> ||\omega ||_s\) giving a contradiction.

Parts (c),(d) follow from parts (a),(b) by substituting \(-\vec {v}\) for \(\vec {v}\). \(\square \)

Proof of Theorem 5.9

Given \(T>0\), \(0<t<T\), let \(\vec {w}:=-h^{t/T} g^{\ln T} \vec {v}\), then we have by (5.4)

$$\begin{aligned} {\mathcal {W}}_h(\omega , \vec v, t)={\mathcal {W}}_g(\omega , \vec v, \ln T)+ {\mathcal {W}}_g(\omega , \vec w, \ln T)+O(1). \end{aligned}$$
(9.1)

Let us assume to fix our notation that \({\mathcal {W}}_g(\omega , \vec v, \ln T)\ge 0.\) By Proposition 9.1(c) for each \(\varepsilon ,\) if T is sufficiently large then we can find \(\vec u\in T^1 M\) such that

$$\begin{aligned} {\mathcal {W}}_g(\omega , \vec u, \ln T) \le -(||\omega ||_s-{\varepsilon }) \ln T. \end{aligned}$$
(9.2)

The vector \(-\vec u\) does not need to belong to \(\text {Hor}(g^{\ln T}\vec v),\) but since our surface is compact, there exists L such that

$$\begin{aligned} \exists t\in [0,1], \tilde{t}\in [-L, L], \text { and }r\in [-L, L]\text { s.t.}\quad \vec u=\tilde{h}^{\tilde{t}} g^r \vec w, \end{aligned}$$
(9.3)

where \(\vec w=h^t (-g^{\ln T}\vec v)\) and \(\tilde{h}\) denotes the stable horocycle flow.

To show (9.3) it suffices to find \(\tilde{L}\) such that every pair \(\vec u, \vec v\) can be joined by a three leg path consisting of orbits of gh and \(\tilde{h}\) respectively so that each leg is shorter that \(\tilde{L}.\) To see this represent \(T^1 M\) by \(T^1 F\) where F is a compact subset of \(\mathrm {PSL}(2,\mathbb R)\) and use the \(NAN^{-}\) decomposition. Now apply the geodesic flow to shorten the stable leg.

(9.3) shows that

$$\begin{aligned} {\mathcal {W}}_g(\omega , \vec w, \ln T)={\mathcal {W}}_g(\omega , \vec u, \ln T)+O(1). \end{aligned}$$

Thus (9.2) tells us that the \(\lim \inf \) in (5.9) is greater than \(||\omega ||_s-\varepsilon .\) Since \({\varepsilon }\) is arbitrary, (5.9) follows.

To prove (5.10) it remains to bound

$$\begin{aligned} \limsup _{T\rightarrow \infty } \max _{t\le T} \frac{\left| {\mathcal {W}}_h(\omega , \vec v, t)\right| }{\ln T} . \end{aligned}$$

By Ergodic Theorem for almost all \(\vec v\), \(\displaystyle \lim _{T\rightarrow \infty } \frac{{\mathcal {W}}_g(\omega , \vec v, \ln T)}{\ln T}=0. \) Thus by (9.1)

$$\begin{aligned} \limsup _{T\rightarrow \infty }\max _{t\le T} \frac{\left| {\mathcal {W}}_h(\omega , \vec v, t)\right| }{\ln T}= \lim \sup \frac{\left| {\mathcal {W}}_g(\omega , \vec w, \ln T)\right| }{\ln T}, \end{aligned}$$

which is less than \(||\omega ||_s\) by parts (a) and (c) of Proposition 9.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopyat, D., Sarig, O. Temporal Distributional Limit Theorems for Dynamical Systems. J Stat Phys 166, 680–713 (2017). https://doi.org/10.1007/s10955-016-1689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1689-3

Keywords

Mathematics Subject Classification

Navigation