Skip to main content
Log in

Reconstitution of fibroblast growth factor receptor interactions in the yeast two hybrid system

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fibroblast growth factors (FGF) activate their receptors through the formation of trimolecular complexes, composed of a ligand, a receptor, and a heparan sulfate oligosaccharide, all of which are members of particularly large families capable of multiple interactions in a combinatorial fashion. Understanding this large network of interactions not only presents a great challenge, but is practically beyond the capacity of most classical techniques routinely used to study ligand receptor interactions. We have used the yeast two hybrid system to study protein-protein interaction in the FGF family. Both ligand and receptor ectodomains are properly folded and functional in the yeast. Basic FGF (bFGF) expressed in the yeast dimerizes spontaneously. This self-assembly occurs at low affinity, which can be greatly enhanced by the introduction of heparin, supporting a defined role for heparin in bFGF dimerization. Screening a rat embryo cDNA library with bFGF in the yeast two hybrid system identified a short variant of FGF receptor 1, found most frequently in embryonal and tumor cells and which possesses affinity toward bFGF that is significantly greater than that of the more abundant, full-length receptor. We find the yeast two hybrid system, a most suitable alternative method for the analysis of growth factor-receptor interactions as well as for screening for novel interacting proteins and modulators of FGF and its receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Givol, D. and Yayon, A., (1992)FASEB J. 6, 3362–3369.

    PubMed  CAS  Google Scholar 

  2. Johnson, D. E. and Williams, L. T. (1993)Adv. Cancer Res. 160, 1–41.

    Google Scholar 

  3. Yang, X., Hubbard, J. A., and Carlson, M. (1992)Science 257, 31–33.

    Article  Google Scholar 

  4. Chein, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991)Proc. Natl. Acad. Sci. USA. 88, 9578–9582.

    Article  Google Scholar 

  5. Wade Harper, J., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J., 1993,Cell 75, 805–816.

    Article  Google Scholar 

  6. Ito, H., Fukada, Y., Murata, K., and Kimura, A. (1983)J. Bacteriol. 153, 161–168.

    Google Scholar 

  7. Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L., (1993)Science 259, 1918–21.

    Article  PubMed  CAS  Google Scholar 

  8. Zimmer, Y., Givol, D., and Yayon, A. (1993)J Biol Chem 268, 7899–7903.

    PubMed  CAS  Google Scholar 

  9. Johnson, D. E., Lee, P. L., Lu, J., and Williams, L. T. (1990)Molecular and Cellular Biology 10, 4728–4736.

    PubMed  CAS  Google Scholar 

  10. Mansukhani, A., Moscatelli, D., Talarico, D., Levytska, V., and Basilico, C. (1990)Proc. Natl. Acad. Sci. USA. 87, 4378–4382.

    Article  PubMed  CAS  Google Scholar 

  11. Shi, E., Kan, M., Xu, J., Wang, F., Hou, J., and McKeehan, W. L. (1993)Mol Cell Biol 13, 3907–3918.

    PubMed  CAS  Google Scholar 

  12. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillip, H. S., and Ferrara, N. (1993)Nature 362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  13. Yan, G., Wang, F., Fukabori, Y., Sussan, D., Hou, J., and Mckeehan, W. L. (1992)Biochem. Biophys. Res. Commun. 183, 423–430.

    Article  PubMed  CAS  Google Scholar 

  14. Bernard, O., Li, M., and Reid, H. (1991)Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    Article  Google Scholar 

  15. Prudovsky, I. A., Savion, N., LaVallee, T. M., and Maciag, T. (1996)J. of Biol. Chem. 14,198–14,206.

    Google Scholar 

  16. Spivak, K. T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., Jaye, M., Schlessinger, J., and Lax, I. (1994)Cell 79, 1015–1024.

    Article  Google Scholar 

  17. Albini, A., Benelli, R., Marco, P., Rusnati, M., Ziche, M., Rubartelli, A., Paglialunga, G., Bussolino, F., and Noonan, D. (1995)Proc. Natl. Acad. Sci. USA 92, 4838–4842.

    Article  PubMed  CAS  Google Scholar 

  18. Roghani, M., Mansukhani, A., Dell'Era, P., Bellosta, P., Basilico, C., Rifkin, D. B., and Moscatelli, D. (1994)J. Biol Chem. 269, 3976–3984.

    PubMed  CAS  Google Scholar 

  19. Spivak, K. T., Mohammadi, M., Hu, P., Jaye, M., Schlessinger, J., and Lax, I., (1994)J Biol Chem 269, 14,419–14,423.

    Google Scholar 

  20. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991)Cell 64, 841–848.

    Article  PubMed  CAS  Google Scholar 

  21. Pantoliano, M. W., Horlick, R. A., Springer, B. A., Van, D. D., Tobery, T., Wetmore, D. R., Lear, J. D., Nahapetian, A. T., Bradley, J. D., and Sisk, W. P. (1994)Biochemistry 33, 10,229–10,248.

    Article  CAS  Google Scholar 

  22. Ozenberger, B. A. and Young, K. H. (1995)Molecular Endocrinology 9, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  23. Bartel, P. L., Chien, C. T., Sternglanz, R., and Fields, S. (1993)In Cellular Interactions in Development: a practical approach (Hartley, D. A., ed.) Oxford University Press, Oxford. 153–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Yayon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aloni-Grinstein, R., Seddon, A. & Yayon, A. Reconstitution of fibroblast growth factor receptor interactions in the yeast two hybrid system. Mol Biotechnol 11, 213–220 (1999). https://doi.org/10.1007/BF02788679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788679

Index Entries

Navigation