Skip to main content
Log in

Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The structural attributes and zonation patterns of mangrove forests in a dry environmental setting were evaluated in relation to gradients of soil resources, soil regulators, and hydroperiod between October 2000 and August 2001 in the Gulf of Fonseca, Honduras. Transects perpendicular to the edge of tidal channels were established at four mangrove sites, each sectioned into three mangrove zones (fringe, transition, and scrub) based upon distinct tree-height gradients. Porewater sulfide concentrations among zones were normally below levels of detection (<0.03 mM) and mean redox values ranged from 163.4±9.9 to −42.4±15.8 mv, indicating slightly reducing conditions in all zones. Mean porewater NOx and PO4 3− concentrations were not significantly different among zones and ranged from 3.3±0.5 to 4.5±0.4 μM and from 0.05 ±0.02 to 0.18±0.04 μM, respectively. Soil nitrogen concentrations were 1–3 mg g−1 in all zones, and mean nitrogen:phosphorus atomic ratios were <20 (range: 12.9–14.9), indicative of fertile wetland soils. Mean basal areas were significantly different among mangrove zones (fringe > transition) and were coupled with differences in height within species and zones.Avicennia germinans occupied areas with higher elevations associated with higher salinities ranging from 80 to 140 g kg−1 in the dry season.Rhizophora mangle dominated lower elevations where salinities ranged from 38 to 57 g kg−1 in both the dry and wet seasons. Spatial analysis on mangrove seedlings along transects confirmed that seedling distribution along the intertidal profile was statistically correlated with conspecific adults, indicating that survival and growth of seedlings in different intertidal locations are closely matched to canopy membership. The sharp transition (<100 m) in forest structure and distribution of mangrove species along the intertidal zone of subhumid coastal environments demonstrate common zonation patterns where species distribution and species-specific habitat suitability are mediated closely with tolerance to soil regulators (high soil salinity) rather than resource availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alongi, D. M., K. G. Boto, andA. I. Robertson. 1992. Nitrogen and phosphorus cycles, p. 251–292.In A. I. Robertson and D. M. Alongi (eds.), Tropical Mangrove Ecosystems, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Aspila, K. I., H. Agemian, andS. Y. Chau. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments.Analyst 101:187–197.

    Article  CAS  Google Scholar 

  • Ball, M. C. 1980. Patterns of secondary succession in a mangrove forest in south Florida.Oecologia 44:226–235.

    Article  Google Scholar 

  • Ball, M. C. 1988. Ecophysiology of mangroves.Trees-Structure and Function 2:129–142.

    Google Scholar 

  • Ball, M. C. 1998. Mangrove species richness in relation to salinity and waterlogging: A case study along the Adelaide River floodplain, northern Australia.Global Ecology and Biogeography Letters 7:73–82.

    Article  Google Scholar 

  • Ball, M. C. 2002. Interactive effects of salinity and irradiance on grwoth: Implications for mangrove forest structure along salinity gradients.Trees-Structure and Function 16:126–139.

    Google Scholar 

  • Bunt, J. S. 1996. Mangrove zonation: An examination of data from seventeen riverine estuaries in tropical Australia.Annals of Botany 78:333–341.

    Article  Google Scholar 

  • Bunt, J. S. andE. D. Bunt. 1999. Complexity and variety of zonal pattern in the mangroves of the Hinchinbrook area, northeastern Australia.Mangroves and Salt Marshes 3:165–176.

    Article  Google Scholar 

  • Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt, andB. C. Perez. 2003b. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch.Journal of Ecology 91:1093–1105.

    Article  Google Scholar 

  • Cahoon, D. R., P. Hensel, J. Rybczyk, and B. C. Perez. 2003a. Hurricane Mitch: Impacts on mangrove sediment elevation dynamics and long-term mangrove sustainability. U.S. Geological Survey Open File Report 03-184. Lafayette, Louisiana.

  • Carlson, P. R., L. A. Yarbro, C. F. Zimmermann, andJ. R. Montgomery. 1983. Pore water chemistry of an overwash mangrove island.Florida Scientist 46:239–249.

    CAS  Google Scholar 

  • Chapman, V. J. 1976. Mangrove Vegetation Cramer, Leutershausen, Germany.

    Google Scholar 

  • Chen, R. andR. R. Twilley. 1998. A gap dynamic model of mangrove forest development along gradients of salinity and nutrient resources.Journal of Ecology 86:37–51.

    Article  Google Scholar 

  • Chen, R. andR. R. Twilley. 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida.Estuaries 22:955–970.

    Article  Google Scholar 

  • Cintron, G., A. E. Lugo, D. Douglas, J. Pool andG. Morris. 1978. Mangroves of arid environments in Puerto Rico and adjacent islands.Biotropica 10:110–121.

    Article  Google Scholar 

  • Cintron, G. andY. S. Novelli. 1984. Methods for studying mangrove structure, p. 91–113.In S. C. Snedaker and J. G. Snedaker (eds.), The Mangrove Ecosystem Research Methods, Series number 8, UNESCO, Paris, France.

    Google Scholar 

  • Clarke, P. J. 2004. Effects of experimental canopy gaps on mangrove recruitment: Lack of habitat partitioning may explain stand dominance.Journal of Ecology 92:203–213.

    Article  Google Scholar 

  • Clarke, P. J., R. A. Kerrigan, andC. J. Westphal. 2001. Dispersal potential and early growth in 14 tropical mangroves: Do early life hisotry traits correlate, with patterns of adult distribution?Journal of Ecology 89:648–659.

    Article  Google Scholar 

  • Cottam, G. andJ. T. Curtis. 1956. The use of distance measures in phytosociological sampling.Ecology 37:451–460.

    Article  Google Scholar 

  • Dale, M. R. T. 1999. Spatial Pattern Analysis in Plant Ecology, 1st edition. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Dale, M. R. T., P. Dixon, M. J. Fortin, P. Legendre, D. E. Myers, andM. S. Rosenberg. 2002. Conceptual and mathematical relationships among methods for spatial analysis.Ecography 25: 558–577.

    Article  Google Scholar 

  • Davis, Jr.,J. H. 1940. The ecology and geology role of mangroves in Florida.Carnegie Institute of Washington Publications 517:303–412.

    Google Scholar 

  • Day, Jr.,J. W., W. H. Conner, F. Ley-Lou, R. H. Day, andA. Machado Navarro. 1987. The productivity and composition of mangrove forests, Laguna de Terminos, Mexico.Aquatic Botany 27:267–284.

    Article  Google Scholar 

  • Delgano, P., P. F. Hensel, J. A. Jimenez, andJ. W. Day. 2001. The importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuary.Aquatic Botany 1512:1–22.

    Google Scholar 

  • Dewalt, B., P. Vergne, andM. Hardin. 1996. Shrimp aquaculture development and the environment: People, mangroves and fisheries on the Gulf of Fonseca, Honduras.World Development 24:1193–1208.

    Article  Google Scholar 

  • Egler, F. E. 1952. Southeast saline Everglades vegetation, Florida and its mangement.Vegetatio 3:213–265.

    Article  Google Scholar 

  • Ellison, A. M. 2002. Macroecology of mangroves: Large-scale patterns and processes in tropical coastal forest.Trees-Structure and Function 16:181–194.

    Google Scholar 

  • Ellison, A. M., B. B. Mukherjee, andA. Karim. 2000. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh.Journal of Ecology 88:813–824.

    Article  Google Scholar 

  • Feller, I. C., K. L. McKee, D. F. Whigham, andJ. P. O'Neill. 2003b. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest.Biogeochemistry 62:145–175.

    Article  CAS  Google Scholar 

  • Feller, I. C., D. F. Whigham, K. L. McKee, andC. E. Lovelock. 2003a. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida.Oecologia 134:405–414.

    Google Scholar 

  • Feller, I. C., D. F. Whigham, J. P. O'Neill, andK. L. McKee. 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest.Ecology 80:2193–2205.

    Article  Google Scholar 

  • Freund, R. J. andW. J. Wilson. 2003. Statistical Methods, 2nd edition. Academic Press, San Diego, California.

    Google Scholar 

  • Galiano, E. F. 1983. Detection of multi-species patterns in plant populations.Vegetatio 53:129–138.

    Google Scholar 

  • Hargis, T. G. andR. R. Twilley. 1994. Multi-depth probes for measuring oxidation-reduction (redox) potential in wetland soils.Journal of Sedimentary Research A64:684–685.

    Google Scholar 

  • Hargreaves, G. 1980. Monthly precipitation: Probabilities for moisture availability for Honduras. Utah State University Report, Logan, Utah.

  • Hensel, P. and C. E. Proffitt. 2003. Hurricane Mitch: Acute impacts on mangrove forest structure and an evaluation of recovery trajectories. U.S. Geological Survey Open File Report 03-182. Lafayette, Louisiana.

  • Hill, M. O. 1973. The intensity of spatial pattern in plant communities.Journal of Ecology 61:225–235.

    Article  Google Scholar 

  • Holdridge, L. R., W. C. Grenke, W. H. Hatheway, T. Liang, andJ. A. Tosi Jr. 1971 Forest Environments in Tropical Life Zones: A Pilot Study. Pergamon Press Inc., New York.

    Google Scholar 

  • Huston, M. A. 1994. Biological Diversity: The Coexistence of Species on Changing Landscapes, 1st edition, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Jimenez, J. A. 1990. The structure and function of dry weather mangroves on the pacific coast of Central America, with emphasis onAvicennia bicolor forests.Estuaries 13:182–192.

    Article  Google Scholar 

  • Jimenez, J. A. andK. Sauter. 1991. Structure and dynamics of mangrove forest along a flooding gradient.Estuaries 14:49–56.

    Article  Google Scholar 

  • Jimenez, J. A. andR. Soto. 1985. Patrones regionales en la estructura y composicion floristica de los manglares de la Costa Pacifica de Costa Rice.Revista de Biologia Tropical 3:25–37.

    Google Scholar 

  • Lugo, A. E. andS. C. Snedaker. 1974. The ecology of mangroves.Annual Reviews of Ecology and Systematies 3:25–64.

    Google Scholar 

  • Macnae, W. 1968. A general account of the fauna and flora of mangrove swamps and foresrs in the Indo-West pacific region,Annual Reviews Biology 6:73–270.

    Google Scholar 

  • McKee, K. L. 1993. Soil physicochemical patterns and mangrove species distribution—reciprocal effects?.Journal of Ecology 81: 477–487.

    Article  Google Scholar 

  • Mckee, K. L. andP. Faulkner. 2000. Restoration of biogeochemical function in mangrove forests.Restoration Ecology 8:247–259.

    Article  Google Scholar 

  • McKey, K. L., I. C. Feller, andM. Popp, andW. Wanek. 2002. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient.Ecology 83:1065–1075.

    Google Scholar 

  • McKee, K. L. and T. E. McGinnis, II. 2003. Hurricane Mitch: Effects on mangrove soil characteristics and root contributions to soil stabilization, U.S., Geological Survey Open File Report 03-178. Lafayette, Louisiana.

  • McKee, K. L., I. A. Mendelssohn, andM. W. Hester. 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots ofRhizophora mangle andAvicennia germinans American Journal of Botany 75:1352–1359.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gossellink. 2000. Wetlands, 3nd edition. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • Murphy, P. G. andA. E. Lugo. 1986. Ecology of trophical dry forest.Annual Reviews of Ecology and Systematics 17:67–88.

    Article  Google Scholar 

  • Oyuela, O. 1994. Los manglares del Golfo de Fonseca—Honduras, p. 133–141.In D. Suman (ed.), El ecosistema de manglar en America Latina y la cuenca del Caribe: Su man ejo y conservacion. Rosenstiel School, of Marine and Atmospheric Science, University of Miami and The Tinker Foundation. New York.

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984 A Manual of Chemical and Biological Methods for Seawater Analysis. 1st edition. Pergamon Press, New York.

    Google Scholar 

  • Pool, D. J., S. C. Snedaker, andA. E. Lugo. 1997. Structure of mangrove forest in Florida, Puerto Rico, Mexico, and Costa Rica.Biotropica 9:195–212.

    Article  Google Scholar 

  • Pritchard, D. W. 1967. What is an estuary: Physical viewpoint, p. 3–5.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science. Publication No. 83. Washington, D.C.

  • Rabinowitz, D. 1978. Dispersal properties of mangrove propagules.Biotrpica 10:47–57.

    Article  Google Scholar 

  • Rivera-Monroy, V. H., R. R. Twilley, and E. Castañeda. 2003. Hurricane Mitch: Integrative management and rehabilitation of mangrove resources to develop sustainable shrimp mariculture in the Gulf of Fonseca, Honduras. U.S. Geological Survey Open File Report 03-177. Lafayette, Louisiana.

  • Rivera-Monroy, V. H., R. R. Twilley, E. Medina, E. B. Moser, L. Botero, A. M. Francisco, andE. Bullard. 2004. Spatial variability of soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River Estuary, Venezuela.Estuaries 27:44–57.

    Article  CAS  Google Scholar 

  • Rosenberg, M. S. 2002. PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Version 1.0. Department of Biology, Arizona State University, Tempe, Arizona.

    Google Scholar 

  • SASInstitute Inc. 1999. Selected SAS documentation for BIOL 570: Statistical Ecology, 1st edition Volumes 1 and 2. Cary, North Carolina.

  • SAS JMP. 2004. JMP Statistics and Graphics Guide, Version 5, Release 5.1.2. Statistical Analysis System, Cary, North Carolina.

    Google Scholar 

  • Smith, III,T. J. 1987. Seed predation in relation to tree dominance and distribution in mangrove forests.Ecology 68:266–273.

    Article  Google Scholar 

  • Snedaker, S. C. 1982. Mangrove species zonation: Why? p. 111–125.In D. N. Sen and K. S. Rajpurohit (eds.), Contributions to the Ecology of Halophytes, Volume 2. Dr. W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Soto, R. andJ. Jimenez. 1982. Analisis fisonomico estructural del manglar de Puerto Soley, La Cruz, Guanascate, Costa Rica.Revista de Biologia Tropical 30:161–168.

    Google Scholar 

  • Sousa, W. P., P. G. Kennedy, andB. J. Mitchell 2003. Propagule size and predispersal damage by insects affect establishment and early growth of mangrove seedlings.Oecologia 135:564–575.

    Google Scholar 

  • Strickland, J. D. H. andT. R. Parsons. 1972. A practical handbook of sea-water analysis.Fisheries Research Board of Canada 167:1–310.

    Google Scholar 

  • Thibodeau, F. R. andN. Nickerson. 1986. Differential oxidation of mangrove substrate byAvicennia germinans andRhizophora mangle.American Journal of Botany 73:512–516.

    Article  Google Scholar 

  • Thom, B. G. 1967. Mangorve ecology and deltaic geomorphology, Tabasco, Mexico.Journal of Ecology 55:301–343.

    Article  Google Scholar 

  • Twilley, R. R. 1995. Properties of mangroves ecosystems and their relation to the energy signature of coastal environments, p. 43–62.In C. A. S. Hall (ed.), Maximum Power: The Ideas and Applications of H. T. Odum. University Press of Colorado, Niwot, Colorado.

    Google Scholar 

  • Twilley, R. R. 1997. Mangrove wetlands, p. 445–473.In M. Messina and W. Connor (eds.), Southern Forested Wetlands: Ecology and Management, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Twilley, R. R. andV. H. Rivera-Monroy. 2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics.Journal of Coastal Research 40:79–93.

    Google Scholar 

  • Vergne, P., M. Hardin, and B. Dewalt. 1993. Environmental Study of the Gulf of Fonseca Tropical Research and Development, Inc., Washington, D.C.

  • Ward, G. H. andC. Montague. 1996. Estuaries, p. 12.1–12.114.In I. W. Mays (ed.), Handbook of Water Resources Engineering. McGraw-Hill Book Co., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Castañeda-Moya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castañeda-Moya, E., Rivera-Monroy, V.H. & Twilley, R.R. Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras. Estuaries and Coasts: J ERF 29, 751–764 (2006). https://doi.org/10.1007/BF02786526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786526

Keywords

Navigation