Skip to main content
Log in

Human fetal endothelial cells acquire Zinc(II) from both the protein bound and nonprotein bound pools in serum

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To help determine physiologically important routes by which zinc (Zn) is acquired by human fetal vascular endothelium, the authors incubated cultured umbilical vein endothelial cells with65Zn(II)-tracer labeled human fetal whole serum, ultrafiltrate (containing low molecular mass serum zinc complexes), and dialyzed serum (containing protein-bound zinc). Zinc from whole serum and from both serum fractions entered a rapidly labeled cellular compartment removable by edetic acid (EDTA), representing Zn bound to the outside cell surface, and accumulatively, an EDTA-resistant compartment’probably largely internalized Zn. Entry of Zn into the EDTA-resistant pool from both serum fractions was strongly temperature-dependent, and was not via the EDTA-sensitive pool. Entry from the ultrafiltrate was resolvable into high affinity saturable, and non-(or hardly-) saturable components. Transfer from the dialyzed serum fraction was not significantly saturable, but only partially accounted for by nonspecific pinocytosis. Thus, Zn is obtained by fetal vascular endothelium partly from low molecular mass serum species, probably through at least one carrier-mediated membrane transport system; but also from Zn complexed with serum protein, via at least one metabolism-related route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. Dreosti, I. R. Record, and S. J. Manuel, Zinc deficiency and the developing embryo,Biol. Trace Element Res. 7, 103–122 (1985).

    CAS  Google Scholar 

  2. L. S. Hurley, Zinc deficiency in prenatal and neonatal development, inProgress in Clinical and Biological Research, vol. 14, Zinc Metabolism: Current Aspects in Health and Disease, G. J. Brewer and A. S. Prasad, eds., A. R. Liss, New York, pp. 47–58 (1977).

    Google Scholar 

  3. F. Y. H. Wu and C. W. Wu, Zinc in DNA replication and transcription,Ann. Rev. Nutr. 7, 251–272 (1987).

    Article  CAS  Google Scholar 

  4. J. K. Chesters, Biochemistry of zinc in cell division and tissue growth, inZinc in Human Biology, C. F. Mills, ed., Springer-Verlag, New York, Berlin, Heidelberg, pp. 109–118 (1989).

    Google Scholar 

  5. M. S. Clegg, C. L. Keen, and L. S. Hurley, Biochemical pathologies of zinc deficiency, inZinc in Human Biology, C. F. Mills, ed., Springer-Verlag, New York, Berlin, Heidelberg, pp. 129–145, (1989).

    Google Scholar 

  6. J. Apgar, Zinc and reproduction,Ann. Rev. Nutr. 5, 43–68 (1985).

    Article  CAS  Google Scholar 

  7. R. S. Beach, M. E. Gershwin, and L. S. Hurley, Reversibility of developmental retardation following murine fetal zinc deprivation.J. Nutr. 112, 1169–1181 (1982).

    PubMed  CAS  Google Scholar 

  8. S. Jameson, Effects of zinc deficiency in human reproduction,Acta Med. Scand. Suppl. 593, 4–88 (1976).

    Google Scholar 

  9. N. J. Meadows, W. Ruse, M. F. Smith, P. W. N. Keeling, D. L. Bloxam, J. Day J. Scopes, and R. P. H. Thompson, Zinc and small babies.Lancet (ii), 1135–1137 (1981).

    Article  Google Scholar 

  10. N. J. Meadows, W. Ruse, P. W. N. Keeling, J. W. Scopes, and R. P. H. Thompson, Peripheral blood leucocyte zinc depletion in babies with intrauterine growth retardation,Arch. Dis. Child. 58, 807–809 (1983).

    PubMed  CAS  Google Scholar 

  11. D. J. Bobilya, M. Briske-Anderson, L. K. Johnson, and P. G. Reeves, Zinc exchange by endothelial cells in culture,J. Nutr. Biochem. 2, 565–569 (1991).

    Article  CAS  Google Scholar 

  12. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Zinc transport into endothelial cells is a facilitated process,J. Cell. Physiol. 151, 1–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. J. W. Foote and H. T. Delves, Albumin bound and {ie270-1}-macroglobulin bound zinc concentrations in the sera of healthy adults.J. Clin. Pathol. 37, 1050–1054 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. S. Kiilerich and C. Christiansen, Distribution of serum zinc between albumin and {ie270-2}-macroglobulin estimated by ultracentrifugation,Clin. Chim. Acta. 142, 273–280 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. A. S. Prasad and D. Oberleas, Binding of zinc to amino acids and serum proteins in vitro,J. Lab. Clin. Med. 76, 416–425 (1970).

    PubMed  CAS  Google Scholar 

  16. B. J. Scott and A. R. Bradwell, Identification of the serum binding proteins for iron, zinc, cadmium, nickel and calcium.Clin. Chem. 29 629–633 (1983).

    PubMed  CAS  Google Scholar 

  17. M-J. Blais and G. Berton, Zinc-citrate interactions in blood plasma. Quantitative study of the metal ion equilibria in the zinc-citrate-histidinate-glutamate and-threoninate systems and computer simulation of the ability of citrate to mobilise the low molecular weight fraction of zinc,Inorg. Chim. Acta 67, 109–115 (1982).

    Article  CAS  Google Scholar 

  18. D. L. Bloxam, J. C. Y. Tan, and C. E. Parkinson, Non-protein bound zinc concentration in human plasma and amniotic fluid measured by ultrafiltration.Clin. Chim. Acta 144, 81–93 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. J. W. Foote and H. T. Delves, Determination of non-protein-bound zinc in human serum using ultrafiltration and atomic absorption spectrometry with electrothermal atomisation.Analyst 113, 911–915 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. E. L. Giroux and R. I. Henkin, Competition for zinc among serum albumin and amino acids,Biochim. Biophys. Acta 273, 64–72 (1972).

    PubMed  CAS  Google Scholar 

  21. R. C. Whitehouse, A. S. Prasad, and Z. T. Cossack, Determination of ultrafilterable zinc in plasma by flameless atomic absorption spectrophotometry,Clin. Chem. 29, 1974–1977 (1983).

    PubMed  CAS  Google Scholar 

  22. D. R. Williams, Computer models of metal biochemistry and metabolism, inChemical Toxicology and Clinical Chemistry of Metals, S. S. Browning and J. Savory, eds., Academic, New York, pp. 167–182 (1983).

    Google Scholar 

  23. W. R. Harris and C. Keen, Calculations of the distribution of zinc in a computer model of human serum,J. Nutr. 119, 1677–1682 (1989).

    PubMed  CAS  Google Scholar 

  24. G. R. Magneson, J. M. Puvathingal, and W. J. Ray, The concentrations of free Mg2+ and free Zn2+ in equine blood plasma,J. Biol. Chem. 262, 11,140–11,148 (1987).

    CAS  Google Scholar 

  25. E. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick, Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria,J. Clin. Invest. 52, 2745–2756 (1973).

    Article  PubMed  CAS  Google Scholar 

  26. E. R. Weibel, and G. E. Palade, New cytoplasmic components in arterial endothelium,J. Cell Biol. 23, 101–112 (1964).

    Article  PubMed  CAS  Google Scholar 

  27. C. M. R. Bax, An investigation of zinc uptake by trophoblast cells and endothelial cells in vitro, PhD thesis, University of London, UK (1992).

    Google Scholar 

  28. N. E. Good and S. Izawa, Hydrogen ion buffers,Method. Enzymol. 24, 53–68 (1972).

    CAS  Google Scholar 

  29. J. W. Foote and H. T. Delves, Determination of zinc in small volumes of serum using atomic-absorption spectrophotometry with electrothermal atomisation,Analyst 107, 1229–1234 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  31. G. L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable,Anal. Biochem. 83, 346–356 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. P. J. Munson and D. Rodbard, LIGAND: a versatile computerized approach for the characterization of ligand binding systems,Anal. Biochem. 107, 220–239 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Ligands influence Zn transport into cultured endothelial cells,Proc. Soc. Exp. Biol. Med. 202, 159–166 (1993).

    PubMed  CAS  Google Scholar 

  34. S.-J. Lau, and B. Sarkar, Comparative studies of manganese(II)-, nickel(II)-, zinc(II)-, copper(II)-, cadmium(II)-, and iron(III)-binding components in human cord and adult sera.Can. J. Biochem. Cell Biol. 62, 449–455 (1983).

    Article  Google Scholar 

  35. E. O. Martins, Flow-through dialysis of zinc(II) from model and human sera.J. Inorg. Biochem. 33, 237–245 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. C. M. R. Bax and D. L. Bloxam, Two major pathways of zinc(II) acquisition by human placental syncytiotrophoblast,J. Cell Physiol. 164, 546–554 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. M. L. Ackland, D. M. Danks, and H. J. McArdle, Studies on the mechanism of zinc uptake by human fibroblasts.J. Cell. Physiol. 135, 521–526 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. M. L. Ackland and H. J. McArdle, Significance of extracellular zinc-binding ligands in the uptake of zinc by human fibroblasts,J. Cell. Physiol. 145, 409–413 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. N. Aslam and H. J. McArdle, Mechanism of zinc uptake by microvilli isolated from human term placenta,J. Cell. Physiol. 151, 533–538 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. R. A. Wapnir, D. E. Khani, M. A. Bayne, and F. Lifshitz, Absorption of zinc by the rat ileum: effects of histidine and other low molecular weight ligands.J. Nutr. 113, 1346–1354 (1983).

    PubMed  CAS  Google Scholar 

  41. R. A. Wapnir and L. Stiel, Zinc intestinal absorption in rats: specificity of amino acids as ligands,J. Nutr. 116, 2171–2179 (1986).

    PubMed  CAS  Google Scholar 

  42. B. Gachot, M. Tauc, L. Morat, and P. Poujeol, Zinc uptake by proximal cells isolated from rabbit kidney: effects of cysteine and histidine,Pflugers Arch. 419, 583–587 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. J. P. Van Wouwe, M. Veldhuizen, J. J. M. De Groeij, and C. J. A. Van den Hamer, In vitro exchangeable erythrocyte zinc,Biol. Trace Element Res. 25, 57–69 (1990).

    Google Scholar 

  44. R. Weisiger, J. Gollan, and R. Ockner, Reptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances,Science 211, 1048–1051 (1981).

    Article  PubMed  CAS  Google Scholar 

  45. G. De Jong, J. P. van Dijk, and H. G. van Eijk, The biology of transferrin,Clin. Chim. Acta 190, 1–46 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bax, C.M.R., Bloxam, D.L. Human fetal endothelial cells acquire Zinc(II) from both the protein bound and nonprotein bound pools in serum. Biol Trace Elem Res 56, 255–271 (1997). https://doi.org/10.1007/BF02785298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785298

Index Entries

Navigation