Skip to main content
Log in

Biokinetics of lead in various organs of rats using radiotracer technique

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Uptake, distribution, and elimination of lead in various organs of rats have been studied using a radiotracer technique. The elimination data for various organs, except whole blood, is fitted to a double-exponential function using a computer program. The biological half-lives along with the percent elimination of lead by two different decay modes in testis, epididymis, prostate, and seminal vesicles are being reported together with that in liver, kidney, blood, and whole body. It is evident from this study that the elimination of lead is limited for all the organs and permits lead accumulation in the bone, where it is stored and becomes almost unavailable for elimination. Lead levels in blood, testis, and femur of lead acetate-fed rats measured using atomic absorption spectroscopy have been correlated to the uptake of210Pb in various organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Karim, A. S. Hamed, Y. A. Elhami, and Y. Osman, Effect of exposure to lead among lead acid battery factory workers in Sudan.Arch. Environ. Health. 41, 261–265 (1986).

    Article  PubMed  Google Scholar 

  2. B. Venugopal and T. D. Luckey, Chemical toxicity of metals and metalloids, inMetal Toxicity in Mammals, vol. II, Plenum, New York, pp. 185–195 (1978).

    Google Scholar 

  3. J. U. Bell and J. A. Thomas, Effect of lead on mammalian reproduction, inLead Toxicity, R. L. Singhal and J. A. Thomas, eds. Urban and Schwarzenberg, Baltimore, MD, pp. 169–185 (1980).

    Google Scholar 

  4. I. Lancranjan, H. I. Popescu, O. Gavanescu, I. Klepach, and M. Serbanescu, Reproductive ability of workman occupationally exposed to lead.Arch. Environ. Health. 30, 396–401 (1975).

    PubMed  CAS  Google Scholar 

  5. M. R. Cullen, J. M. Robins, and B. Eskenazi, Adult inorganic lead intoxication: presentation of 31 new cases and review of recent advances in the literature.Medicine 62, 221–247 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. D. A. Cory-Slechta, Lead exposure during advanced age: Alterations in kinetics and Biochemical effects.Toxicol. Appl. Pharmacol. 104, 67–78 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. H. L. Needelman, inLead Toxicity, R. L. Singhal and J. A. Thomas, eds., Urban and Schwarzenberg, Baltimore, MD, pp. 1–17 (1980).

    Google Scholar 

  8. M. Rabinowitz, G. W. Wetherill, and J. D. Kopple, Studies of human lead metabolism by use of stable isotope tracers.Environ. Health Perspect. 7, 145–153 (1974).

    Article  PubMed  CAS  Google Scholar 

  9. M. E. Conrad and J. C. Barton, Factors affecting the absorption and excitation of lead in the rat.Gastroenterology 74, 731–740 (1978).

    PubMed  CAS  Google Scholar 

  10. M. W. B. Bradbury and R. Deane, Rate of uptake of lead-203 into brain and other soft tissues in rat at constant radiotracer levels in plasma.Ann. NY Acad. Sci. 481, 142–160 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. T. Mukoyama, A non-iterative method for fitting two-component, decay curves,Nuclear Instruments Meth. 179, 357–359 (1981).

    Article  CAS  Google Scholar 

  12. O. Einarsson and G. A. Lindstedt, Non extraction atomic absorption method for the determination of lead in blood.Scand. J. Clin. Lab. Invest. 23, 367–371 (1969).

    Article  PubMed  CAS  Google Scholar 

  13. N. Gulati, Study on trace elements in skin tumorigenesis with special reference to selenium (selenite) using neutron activation and radiotracer technique. PhD Thesis, Panjab University, India. pp. 106 (1985).

    Google Scholar 

  14. A. Oskarsson, K. S. Squibb, and B. A. Fowler, Intracellular binding of lead in the kidney. The partial isolation and characterization of most mitochondrial lead binding.Biochem. Biophys. Res. Commun. 104, 290–298 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. P. Mistry, G. W. Lucier, and B. A. Fowler. High-affinity lead binding proteins in rat kidney cytosol mediated cells free nuclear translocation of lead.J. Pharmacol. Exptl. Therap. 232, 462–469 (1985).

    CAS  Google Scholar 

  16. H. J. Church, J. P. Day, R. A. Braithwaite, and S. S. Brown, Binding of lead to a metallothionein-like protein in human erythrocytes.J. Inorg. Biochem. 49, 55–68 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. G. Majno, Ultrastructure of the vascular membrane, inHandbook of Physiology (Circulation). American Physiology Society, Washington, DC, pp. 2293–2375 (1965).

  18. G. O. Korsrud and J. B. Meldrum, Effect of blood, liver and kidney variables of age and of dosing rats with lead acetate orally or via the drinking water.Biol. Trace Element Res. 17, 151–166 (1988).

    CAS  Google Scholar 

  19. N. Castellino and S. Aloj, Intracellular distribution of lead in the liver and kidney of the rat.Br. J. Industr. Med. 26, 139–143 (1969).

    CAS  Google Scholar 

  20. M. E. Gulvik, Spermatogenesis and maturation of spermatozoa in rats exposed to lead.Ann. Acad. Med. Stetin. 35, 73–87 (1989).

    PubMed  CAS  Google Scholar 

  21. R. A. Goyer, Lead toxicity: A problems in environmental pathology.Am. J. Pathol. 64, 167–179 (1971).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, D., Garg, M.L., Bansal, M.R. et al. Biokinetics of lead in various organs of rats using radiotracer technique. Biol Trace Elem Res 53, 249–260 (1996). https://doi.org/10.1007/BF02784561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784561

Index Entries

Navigation