Skip to main content
Log in

Potential carcinogenicity of some transition metal ions

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Potential carcinogenicity of some transition metal ions was tested using a direct-current polarography method. The measurements were based on the reduction of tested compounds in an anhydrous solution using α-lipoic acid as the detection compound. The potential carcinogenicity was expressed in terms of the parameter tg α, which is known to directly correlate with the carcinogenicity of tested compounds. For the metal ions tested, tg α was found to decrease in the following sequence: Fe(III) > Pb(II) > V(IV) > Fe(II) > Mn(II) > Cu(II). Zero values of tg α were found for Cd(II) and Mn(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halliwell and J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease,Biochem. J. 47(219), 1–14 (1984).

    Google Scholar 

  2. W. W. Tso and W. P. Fung, mutagenicity of metallic cations,Toxicol. Lett. 8, 195–200 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. H. Babich, M. A. Devanas, and G. Stotzky G, The mediation of mutagenicity and clastogenicity of heavy metals by physicochemical factors,Environ. Res. 37, 253–256 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. H. J. Issaq, Carcinogenicity and metal ions, inMetal Ions and Biological Systems, Vol. 10, H. Siegel, ed., Marcel Dekker, New York, p. 55 (1985).

    Google Scholar 

  5. S. Borrello, M. E. De Leo, and T. Galeotti, Defective gene expression of MnSOD in cancer cells,Mol Aspects Med,14(3), 253–258 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. L. Novotný and A. Vachálková, Some electrochemical characteristics of synthetic analogs of nucleic acids components I. Derivatives of cytidine and arabinosylcytosine,Neoplasma 37, 377–386 (1990).

    PubMed  Google Scholar 

  7. V. E. Kagan and A. Shedova, Dihydrolipoic acid an universal antioxidant both in the membrane and in the aqueous phase,Biochem. Pharmacol. 44, 1637–1645 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. L. Packer, S. Roy, and Ch. K. Sen, α-Lipoic acid a metabolic antioxidant and potential redox modulator of transcription, inAdvances in Pharmacology 38, Academic, San Diego, CA, pp. 70–101 (1997).

    Google Scholar 

  9. W. Bunge,Eigenschuften und Reinigung der wichtigsten organischen Losungmittel, G. Thieme Verlag, Stuttgart 91959).

  10. V. Podaný and A. Vachálková, Electrochemical properties of polycyclic compounds studied by polarographic method in anhydrous system,Neoplasma 20, 631 (1973).

    PubMed  Google Scholar 

  11. A. Vachálková and L. Novotný, Some electrochemical characteristics of synthetic analogs of nucleic acids components II. Derivatives of uridine and arabinosyluracyl,Neoplasma 37, 555–563 (1990).

    PubMed  Google Scholar 

  12. A. Vachálková, L. Novotný, A. Pískala, Polarographic reduction and carcinogenic index tg α of 5-aza nucleosides possessing antileukemic activity,Neoplasma 40, 289–292 (1993).

    PubMed  Google Scholar 

  13. L. Novotný, A. Vachálková, and Pískala A. Polarographic reduction and potential carcinogenicity of synthetic 1,3,5-triazine bases and nucleosides,Collect. Czech Chem. Commun. 59, 1691–1698 (1994).

    Article  Google Scholar 

  14. R. Meneghini, Iron homeostasis, oxidative stress, and DNA damage,Free Radical Biol Med 23, 783–792 (1997).

    Article  CAS  Google Scholar 

  15. S. Toyokuni, Iron-induced carcinogenesis: the role of redox regulation,Free Radical. Biol. Med. 20, 553–566 (1996).

    Article  CAS  Google Scholar 

  16. H. J. Thompson, K. Kennedy, and J. Juzefyk, Effect of dietary iron deficiency or excess on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea,Carcinogenesis 12, 111–114 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. M. M. Jacobs and R. J. Piente, Modulation of carcinogenesis by other minerals, inChemical Induction of Cancer, J. C. Arcos, ed., Birkhauser, Boston, pp. 349–353 (1995).

    Google Scholar 

  18. V. Herbert, S. Shaw, E. Jayatilleke, and T. Stopler-Kasdan, Most free radical injury is iron-related: it is promoted by iron, hemin, holoferritin and vitamin C, and inhibited by deferoxamine and apoferritin.Stem Cells 12, 289–303 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. M. E. Conrad, C. Uzel, M. Berry, and L. Latour, Ironic catastrophes: one’s food-another’s poison.Am. J. Med. Sci. 307, 434–437 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. M. M. Jacobs and R. J. Piente, Copper modulation of chemical carcinogenesis, inChemical Induction of Cancer, J. C. Arcos, ed., Birkhauser, Boston, pp. 344–346 (1995).

    Google Scholar 

  21. E. P. Norkus, W. Kuenzig, and A. H. Cooney, Studies on the mutagenic activity of ascorbic acid in vitro and in vivo.Mutat. Res. 117, 183–191 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. Anonymous, NTP—Technical Report on the toxicology and carcinogenesis studies of manganese (II) sulfate monohydrate in F344/N rats and B6C3F1 mice (Feed-studies). Available from National Technical Information Service, Springfield, VA as NTIS/PB94-217148 (1994).

  23. Y. Sun, N. H. Colburn, and L. W. Oberley, Decreased expression of manganese superoxiddismutase mRNA and protein after immortalization and transformation of mouse liver cells,Oncol. Res. 5(3), 127–132 (1993).

    PubMed  CAS  Google Scholar 

  24. H. Sakurai, Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects,Environ. Health Perspect. 102,(suppl. 3), 35–36 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. K. H. Thompson and J. H. McNeill, Effect of vanadyl sulfate feeding on susceptibility to peroxidative change in diabetic rats,Res. Commun. Chem. Pathol. Pharmacol. 80(2), 187–200 (1993).

    PubMed  CAS  Google Scholar 

  26. T. F. Cruz, A. Morgan, and W. Min, Antineoplastic effect of vanadium compoundsProc. Annu. Meet. Am. Assoc. Cancer. Res. 36, A2357 (abstract) (1995).

    Google Scholar 

  27. A. M. Cortizo and S. B. Etcheverry, Vanadium derivatives act as growth factor—mimetic compounds upon differentiation and proliferation of osteoblast-like umr106 cells,Mol. Cell Biochem. 145(2), 97–102 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. A. Columbano, T. Endoh, A. Denda, O. Noguchi, D. Nakae, K. Hasegawa, et al., Effects of cell proliferation and cell death (apoptosis and necrosis) on the early stages of rat hepatocarcinogenesis,Carcinogenesis 17(3), 395–400 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. A. K. Ghoshal, The characterization of cytochrome P-450 expression during rat liver carcinogenesis,Diss. Abstr. Int. [B] 55(12), 5200 (1995).

    Google Scholar 

  30. P. Koo, The regulation of placental glutathione s-transferase (gst-p or -7-7) expression in rat liver in relation to chemical hepatocarcinogenesis,Diss. Abstr. Int. [B]53(12), 6237 (1993).

    Google Scholar 

  31. M. P. Waalkes, B. A. Diwan, J. M. Ward, D. E. Devor, and R. A. Goyer, Renal tubular tumors and a typical hyperplasias in b6c3f1 mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy,Cancer Res. 55(22), 5265–5271 (1995).

    PubMed  CAS  Google Scholar 

  32. J. P. Wise, J. M. Orenstein, and S. R. Patierno, Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake,Carcinogenesis 14(3), 429–434 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. J. P. Wise, D. M. Stearns, Sr., K. E. Wetterhahn, and S. R. Patierno, Cell-enhanced dissolution of carcinogenic lead chromate particles: the role of individual dissolution products in clastogenesis,Carcinogenesis 15(10), 2249–2254 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. M. K. Abshire, D. E. Devor, B. A. Diwan, J. D. Shaughnessy, Jr., and M. P. Waalkes, In vitro exposure to cadmium in rat 16 myoblasts can result in both enhancement and suppression of malignant progression in vivo,Carcinogenesis 17(6), 1349–1356 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. M. P. Waalkes, B. A. Diwan, S. Rehm, J. M. Ward, M. Moussa, M. G. Cherian, et al., Down-regulation of metallothionein expression in human and murinehepatocellular tumors: association with the tumor-necrotizing and antineoplastic effects of cadmium in mice,J. Pharmacol. Exp. Ther. 277(2), 1026–1033 (1996).

    PubMed  CAS  Google Scholar 

  36. J. L. Brown and K. T. Kitchin, Arsenite, but not cadmium, induces ornithine decarboxylase and heme oxygenase activity in rat liver: relevance to arsenic carcinogenesis,Cancer Lett. 98(2), 227–231 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dovinová, I., Vachálková, A. & Novotný, L. Potential carcinogenicity of some transition metal ions. Biol Trace Elem Res 67, 63–73 (1999). https://doi.org/10.1007/BF02784276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784276

Index entries

Navigation