Skip to main content
Log in

Determination of platinum in rat dorsal root ganglion using ICP-MS

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study evaluated the performance of inductively coupled plasma mass spectrometry for the determination of platinum (Pt) in rat dorsal root ganglion. The method detection limit was found to be 0.008 ng/mL of Pt, which corresponds to 4 pg of Pt per milligram of ganglia. The standard deviations in the tissue matrix were 5.7% or better and minimum matrix effect was observed. Compared to indium, the use of iridium or a combination of iridium and bismuth as internal standard(s) provided more accurate measurement. The Pt in the tissue digestate was stable for a minimum of 46 d at levels above 0.05 ng/mL. Flow injection analysis using undiluted digestates resulted in approximately 20% signal enhancement. Internal standard correction was necessary to obtain accurate results. The method was used in initial studies in which rats were dosed with cisplatin and has shown that Pt accumulates and persists in dorsal rat ganglion following treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Thompson, L. E. Davis, M. Kornfield, R. D. Hilgers, and J. C. Standefer, Cisplatin neuropathy,Cancer 54, 1269–1275 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. R. W. Gregg, J. M. Molepo, V. J. A. Monpetit, M. Z. Mikael, D. Redmond, M. Gadia, et al., Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of neurotoxicity.J. Clin. Oncol. 10, 795–803 (1992).

    PubMed  CAS  Google Scholar 

  3. S. Munro, L. Ebdon, and D. J. McWeeny, Applications of inductively coupled plasma mass spectrometry for trace metal determination in foods,J. Anal. Atom. Spectrom. 1, 211–219 (1986).

    Article  CAS  Google Scholar 

  4. R. C. Hutton, Technical information, PQ704, VG, Isotopes Ltd., Winsford, Cheshire, UK (1986).

    Google Scholar 

  5. S. Branceh, L. Ebdon, M. Ford, M. Foulkers, and P. O’Neill, Determination of arsenic in sample with high chloride content by inductively coupled plasma spectrometry,J. Anal. Atom. Spectrom. 6, 151–154 (1991).

    Article  Google Scholar 

  6. C. J. Pickeford and R. M. Brown, Comparison of ICP-MS and ICP-ES: detection power and interference effects experienced with complex matrices,Spectrochim. Acta 41B(1-2), 183–187 (1986).

    Google Scholar 

  7. E. M. Thurman and R. L. Malcolm, Preparative isolation of aquatic humic substances,Environ. Sci. Technol. 15, 463–466 (1981).

    Article  CAS  Google Scholar 

  8. H. E. Taylor and J. R. Garbarino, Occurrence and distribution of selected trace metals in the international humic substances society’s standard and reference fulvic and humic acids isolated from the Suwannee River, U.S. Geological Survey Open File No. 87–557 (1990).

  9. A. W. Boom, J. E. Fulford, and W. Wegscheider, Determination of trace elements in organic materials by inductively coupled plasma spectrometry,Mikrochim. Acta 2, 171–178 (1985).

    Google Scholar 

  10. J. R. Dean, R. C. Massey, and L. Ebdon, Selection of mode for the measurement of lead isotope ratios by ICP-MS and its application to milk powder analysis,J. Anal. Atom. Spectrom. 2, 369–374 (1987).

    Article  CAS  Google Scholar 

  11. O. Nygren, G. T. Vaughan, T. M. Florence, G. M. P. Morrison, L. M. Warner, and L. S. Dale, Determination of platinum in blood by adsorptive voltammetry,Anal. Chem. 62, 1637–1640 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. B. Rietz, J. Heydorn, and A. Krarup-Hansen, Determination of platinum by neutron activation analysis in nerve tissue from rats treated with cisplatin,Biol. Trace Element Res. 47, 343–350 (1994).

    Google Scholar 

  13. T. Minami, M. Ichii, and Y. Okazaki, Comparison of three different methods for measurement of tissue platinum level,Biol. Trace Element Res. 48, 37–44 (1995).

    Article  CAS  Google Scholar 

  14. P. Tothill, L. M. Matheson, J. F. Smyth, and K. McKay, Inductively coupled plasma mass spectrometry for the determination of platinum in animal tissues and a comparison with atomic absorption spectrometry,J. Anal. Atom. Spectrom. 5, 619–622 (1990).

    Article  CAS  Google Scholar 

  15. D. C. Gregoire, Determination of platinum, palladium, ruthenium and iridium geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporization,J. Anal. Atom. Spectrom. 3, 309–314 (1988).

    Article  CAS  Google Scholar 

  16. B. J. Perry, R. R. Barefoot, and J. C. Van Loon, Inductively coupled plasma spectrometry for the determination of platinum group elements and gold,Trends Anal. Chem. 14, 388–397 (1995).

    CAS  Google Scholar 

  17. P. Allain, S. Berre, Y. Mauras, and A. Le Bouil, Evaluation of inductively coupled plasma spectrometry for the determination of platinum in plasma,Biol. Mass Spectrom. 21, 141–143 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. B. J. Perry and R. E. Balazs, ICP-MS methods for the determination of platinum in suspensions of cells exposed to cisplatin,Anal. Proc. Includ. Anal. Commun. 31, 260–271 (1994).

    Google Scholar 

  19. B. Casetta, M. Roncadin, G. Montanari, and M. Furlanut, Determination of platinum in biological fluids by inductively coupled plasma spectrometry,Spectroscopy 12, 81–86 (1991).

    CAS  Google Scholar 

  20. A. Montaser and D. W. Golightly,Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd ed., VCH, New York, Chap. 13 (1992).

    Google Scholar 

  21. D. R. Lide,CRC Handbook of Chemistry and Physics, 72nd ed., CRC, Boca Raton, FL (1991).

    Google Scholar 

  22. S. Greenfield, H. M. McGreachin, and P. B. Smith, Nebulization effects with acid solutions in ICP spectrometry,Anal. Chim. Acta 84, 67–78 (1976).

    Article  CAS  Google Scholar 

  23. E. G. Chudinoz, I. I. Ostroukhova, and G. V. Varvanina, Acid effects in ICP-AES,Fresenius Z. Anal. Chem. 335, 25–33 (1989).

    Article  Google Scholar 

  24. M. Thompson and M. H. Ramsey, Matrix effects due to calcium in inductively coupled plasma-atomic emission spectrometry,Analyst 110, 1413–1422 (1985).

    Article  CAS  Google Scholar 

  25. S. R. Koirtyohann, J. S. Jones, C. P. Jester, and D. A. Yates, Use of spatial emission profiles and a nomenclature system as aids in interpreting matrix effects in the low power argon inductively coupled plasma,Spectrochim. Acta 36B, 49–59 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Goldberg, M.M., Raymer, J.H. et al. Determination of platinum in rat dorsal root ganglion using ICP-MS. Biol Trace Elem Res 67, 1–11 (1999). https://doi.org/10.1007/BF02784270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784270

Index entries

Navigation