Skip to main content
Log in

Dietary folate affects the response of rats to nickel deprivation

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Because vitamin B12 and Ni are known to interact and because of the similar metabolic roles of vitamin B12 and folate, an experiment was performed to determine the effect of dietary folate on Ni deprivation in rats. A 2×2 factorially arranged experiment used groups of nine weanling Sprague-Dawley rats. Dietary variables were Ni, as NiCl2·6H2O, 0 or 1 μg/g; and folic acid, 0 or 2 mg/kg. The basal diet, based on skim milk, contained less than 20 ng Ni/g. After 54 d, an interaction between dietary Ni and folate affected several variables including erythrocyte folate, plasma amino acids, and femur trace elements. For example, folate deprivation decreased erythrocyte folate; folate supplementation to the Ni-supplemented rats caused a larger increase in erythrocyte folate concentration than did folate supplementation to the Ni-deprived rats. Also, dietary Ni affected several plasma amino acids important in one-carbon metabolism (e.g., Ni deprivation increased the plasma concentrations of glycine and serine). This study shows that dietary Ni, folate, and their interaction can affect variables associated with one-carbon metabolism. This study does not show a specific site of action of Ni but it indicates that Ni may be important in processes related to the vitamin B12-dependent pathway in methionine metabolism, possibly one-carbon metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Poellot and E. O. Uthus, Effect of folate status on nickel deprivation in rats,FASEB J. 7, A79 (1993).

    Google Scholar 

  2. F. H. Nielsen, T. J. Zimmerman, T. R. Shuler, B. Brossart, and E. O. Uthus, Evidence for a cooperative metabolic relationship between nickel and vitamin B12 in rats,J. Trace Elem. Exper. Med. 2, 21–29 (1989).

    CAS  Google Scholar 

  3. F. H. Nielsen, R. A. Poellot, and E. O. Uthus, Vitamin B12 and sulfur amino acids affect the response of rats to nickel deprivation.FASEB J. 6, A1946 (1992).

    Google Scholar 

  4. R. A. Poellot, T. R. Shuler, E. O. Uthus, and F. H. Nielsen, Dietary margarič acid affects the response to nickel deprivation and the interaction between nickel and vitamin B12 in the rat.Proc. N.D. Acad. Sci. 44, 80 (1990).

    Google Scholar 

  5. F. H. Nielsen, E. O. Uthus, R. A. Poellot, and T. R. Shuler, Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids affect the response of rats to nickel deprivation.Biol. Trace Elem. Res. 37, 1–15 (1993).

    PubMed  CAS  Google Scholar 

  6. E. O. Uthus and R. A. Poellot, Effect of nitrous oxide on nickel deprivation in rats,Biol. Trace Elem. Res. 38, 35–46 (1993).

    PubMed  CAS  Google Scholar 

  7. E. O. Uthus, R. A. Poellot, and F. H. Nielsen, Effect of nitrous oxide and biotin status on nickel deprivation in rats.FASEB J. 6, A1946 (1992).

    Google Scholar 

  8. R. Deacon, M. Lumb, J. Perry, I. Chanarin, B. Minty, M. J. Halsey, and J. F. Nunn, Selective inactivation of vitamin B12 in rats by nitrous oxide,Lancet 2, 1023, 1024 (1978).

    Article  PubMed  CAS  Google Scholar 

  9. R. G. S. Banks, R. J. Henderson, and J. M. Pratt, Reactions of gases in solution. Part III. Some reactions of nitrous oxide with transition-metal complexes.J. Chem. Soc. A. 2886–2889 (1968).

  10. J. Metz, Cobalamin deficiency and the pathogenesis of nervous system disease, inAnnual Review of Nutrition, R. E. Olson, D. M. Bier, and D. B. McCormick, eds. Annual Reviews, Palo Alto, CA, pp. 59–79 (1992).

    Google Scholar 

  11. I. Chanarin, R. Deacon, M. Lumb, M. Muir, and J. Perry, Cobalamin-folate interrelations: A critical review,Blood 66, 479–489 (1985).

    PubMed  CAS  Google Scholar 

  12. B. Shane and E. L. R. Stokstad, The interrelationships among folate, vitamin B12, and methionine metabolism, inAdvances in Nutritional Research, H. H. Draper, ed., Plenum, New York, pp. 133–170 (1983).

    Google Scholar 

  13. I. Chanarin, R. Deacon, M. Lumb, and J. Perry, Cobalamin-folate interrelations,Blood Reviews 3, 211–215 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. R. Deacon, J. Perry, M. Lumb, and I. Chanarin, Cobalamin inactivation induces formyltetrahydrofolate synthetase.FEBS Lett. 263, 303, 304 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. F. H. Nielsen and B. Bailey, The fabrication of plastic cages for suspension in mass air flow racks,Lab. Anim. Sci. 29, 502–506 (1979).

    PubMed  CAS  Google Scholar 

  16. F. H. Nielsen, T. J. Zimmerman, and T. R. Shuler, Interactions among nickel, copper, and iron in rats: Liver and plasma content of lipids and trace elements.Biol. Trace Elem. Res. 4, 125–143 (1982).

    CAS  Google Scholar 

  17. J. F. Kolhouse and R. H. Allen, Recognition of two intracellular cobalamin binding proteins and their identification as methylmalonyl-CoA mutase and methionine synthetase.Proc. Natl. Acad. Sci. USA 74, 921–925 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. H. Sauer, Methionine synthase, inMethods of Enzymatic Analysis, 3rd ed., H. U. Bergmeyer, ed., Verlag Chemie, Deerfield Beach, FL, pp. 304–311 (1983).

    Google Scholar 

  19. S. H. Mudd, B. W. Uhlendorf, J. M. Freeman, J. D. Finkelstein, and V. E. Shih, Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity,Biochem. Biophys. Res. Commun. 46, 905–912 (1972).

    Article  PubMed  CAS  Google Scholar 

  20. E. Uthus and R. Poellot, Effect of dietary pyridoxine on arsenic deprivation in rats,Magnes. Trace Elem. 5–6, 339–347 (1991-1992).

    Google Scholar 

  21. SAS Institute, SAS User's Guide: Statistics,Version 5 Edition, SAS Institute, Cary, NC (1985).

    Google Scholar 

  22. F. H. Nielsen, R. A. Poellot, and E. O. Uthus, Manganese deprivation affects response to nickel deprivation.J. Trace Elem. Exper. Med. 7, 167–185 (1995).

    CAS  Google Scholar 

  23. R. L. Walzem and A. J. Clifford, Folate deficiency in rats fed diets containing free amino acids or intact proteins.J. Nutr. 118, 1089–1096 (1988).

    PubMed  CAS  Google Scholar 

  24. N. Rong, J. Selhub, B. R. Goldin, and I. H. Rosenberg, Bacterially synthesized folate in rat large intestine is incorporated into host tissue folyl polyglutamates.J. Nutr. 121, 1955–1959 (1991).

    PubMed  CAS  Google Scholar 

  25. E. O. Uthus and R. A. Poellot, Dietary nickel, folic acid, and their interaction affect folate metabolism and methionine cycling,FASEB J. 8, A430 (1994).

    Google Scholar 

  26. B. Shane, Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism,Vitamins and Hormones 45, 263–335 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. C. Kutzbach and E. L. R. Stokstad, Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine.Biochim. Biophys. Acta 250, 459–477 (1971).

    PubMed  CAS  Google Scholar 

  28. L. A. Ordonez and R. J. Wurtman, Folic acid deficiency and methyl group metabolism in rat brain: effects of L-dopa,Arch. Biochem. Biophys. 160, 372–376 (1974).

    Article  PubMed  CAS  Google Scholar 

  29. J.-Y. Lin, S.-S. Kang, J. Zhou, and P. W. K. Wong, Homocysteinemia in rats induced by folic acid deficiency,Life Sci. 44, 319–325 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. V. Brothers, B. N. Rowley, and T. Gerritsen, Oxidation of compounds metabolized through folate coenzyme pathways in vitamin B12-deficient rats.Arch. Biochem. Biophys 166, 475–482 (1975).

    Article  PubMed  CAS  Google Scholar 

  31. J. C. Linnell, M. J. Wilson, Y. B. Mikol, and L. A. Poirier, Tissue distribution of methyl-cobalamin in rats fed amino acid-defined, methyl-deficient diets.J. Nutr. 113, 124–130 (1983).

    PubMed  CAS  Google Scholar 

  32. E. V. Quadros, D. M. Matthews, I. J. Wise, and J. C. Linnel, Tissue distribution of endogenous cobalamins and other corrins in the rat, cat and guinea pig.Biochim. Biophys. Acta 421, 141–152 (1976).

    PubMed  CAS  Google Scholar 

  33. A. J. Clifford, M. K. Heid, H. G. Müller, and N. D. Bills, Tissue distribution and prediction of total body folate of rats.J. Nutr. 120, 1633–1639 (1990).

    PubMed  CAS  Google Scholar 

  34. M. Anke, H. Kronemann, B. Groppel, A. Hennig, D. Meissner, and H.-J. Schneider, The influence of nickel-deficiency on growth, reproduction, longevity and different biochemical parameters of goats, in3. Spurenelement-Symposium, Nickel, M. Anke, H.-J. Schneider, and C. Brückner, eds., Friedrich-Schiller-Universität, Jena, pp. 3–10 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

US Department of Agriculture, Agricultural Research Service, Northern Plans Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthus, E.O., Poellot, R.A. Dietary folate affects the response of rats to nickel deprivation. Biol Trace Elem Res 52, 23–35 (1996). https://doi.org/10.1007/BF02784087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784087

Index Entries

Navigation