Skip to main content
Log in

lipid peroxidation in liver of mice administrated with nickel chloride

With Special Reference to Trace Elements and Antioxidants

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The relationship between Ni-induced hepatic lipid peroxidation (LPO) and the concentrations of Ni and trace elements was investigated in male ICR mice. The protective effects of antioxidants were also examined. Hepatic LPO and the concentrations of Ni, Fe, Cu, and Zn in the liver were enhanced after an ip injection of nickel chloride (NiCl2). Dose-response studies were conducted on male mice with different groups being injected with 50, 85, and 170 μmol Ni/kg. LPO increased significantly in a dose-dependent manner. In time-course studies, mice were administrated NiCl2 (170 μmol Ni/kg) and killed at intervals of 6, 12, 24, and 48 h after injection. Both LPO and the accumulation of Ni, Fe, Cu, and Zn in the liver showed a significantly positive time-course relationship after NiCl2 injection. At 1 h and 24 h after a single ip injection of 170 μmol Ni/kg, the mice were given an ip injection of ascorbic acid (vit C), glutathione (GSH), and selenium (Se). Vit C and GSH significantly decreased both the level of hepatic LPO and the concentration of Ni in the liver, but did not decrease the accumulation of Fe, Cu, and Zn. However, LPO in the experimental group of mice was different significantly from that in the control group. In conclusion, the results suggest that Ni-induced hepatic LPO may result from increasing the amounts of Ni, Fe, and Cu, since these elements are involved in the generation of hydroxyl radical by inducing the Fenton reaction, thus instigating the Ni-mediated hepatic LPO. The protective effects of vit C and GSH in hepatic LPO result not only from removing the oxygen reactive species, but also from decreasing the Ni concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Sunderman, Jr., B. Dingle, S. M. Hopfer, and T. Swift, Acute nickel toxicity in electroplating workers who accidentally ingested a solution of nickel sulfate and nickel chloride,Amer. J. Ind. Med. 14, 257–266 (1988a).

    Article  Google Scholar 

  2. T. P. Coogan, D. M. Latta, E. T. Snow, and M. Costa, Toxicity and carcinogenicity of nickel compounds,CRC Crit. Rev. Toxicol. 19, 341–384 (1989).

    Article  CAS  Google Scholar 

  3. F. W. Sunderman, Jr., Mechanisms of nickel carcinogenesis,J. Work Environ. Health 15, 1–12 (1989).

    CAS  Google Scholar 

  4. E. Donskoy, M. Donskoy, F. Forouhar, C. G. Gillies, A. Marzouk, M. C. Reid, O. Zaharia, and F. W. Sunderman, Jr., Hepatic toxicity of nickel chloride in rats,Ann. Clin. Lab. Sci. 16, 108–117 (1986).

    PubMed  CAS  Google Scholar 

  5. F. W. Sunderman, Jr., A. Marzouk, S. M. Hopfer, O. Zaharia, and M. C. Reid, Increased lipid peroxidation in tissue of nickel chloride treared rats,Ann. Clin. Lab. Sci. 15, 229–236 (1985).

    PubMed  CAS  Google Scholar 

  6. H. R. Andersen and O. Andersen, Effect of nickel chloride on hepatic lipid peroxidation and glutathione concentration in mice,Biol. Trace Elem. Res. 21, 255–261 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. K. S. Kasprzak and R. M. Bare, In vitro polymerization of histones by carcinogenic nickel compound,Carcinogenesis 10, 621–624 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. B. Halliwell and J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease,Biochem. J. 219, 1–14 (1984).

    PubMed  CAS  Google Scholar 

  9. M. Younes and C. P. Siegers, Interrelation between lipid peroxidation and other hepatotoxic events,Biochem. Pharmacol. 33, 2001–2003 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. B. Halliwell, Free radicals and antioxidants: personal view,Nutr. Rev. 52, 253–265 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. J. M. C. Cutteridge, Lipid peroxidation and antioxidant as biomarkers of tissue damage,Clin. Chem. 41, 1819–1825 (1995).

    Google Scholar 

  12. B. Frei, R. Stocker, and B. N. Ames, Antioxidant defenses and lipid peroxidation in human blood plasma,Proc. Natl. Acad. Sci. USA 85, 9748–9752 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. K. L. Retsky and B. Frei, Vitamin C prevents metal ion-dependent initiation and propagation of lipid peroxidation in human low-density lipoprotein,Biochim. Biophys. Acta. 1257, 279–287 (1995).

    PubMed  Google Scholar 

  14. B. Chance, H. Sies, and A. Boxeris, Hydroperoxide metablism in mammalian organs,Physiol. Rev. 59, 527–605 (1979).

    PubMed  CAS  Google Scholar 

  15. S. V. S. Rana and S. Verma, Protective effects of GSH, vitamin E and selenium on lipid peroxidation in cadmium-fed rats,Biol. Trace. Element Res. 51, 161–168 (1996).

    Article  CAS  Google Scholar 

  16. M. M. Ricetti, G. C. Guid, G. Bellisola, R. Marrocchella, A. Rigo, and G. Perona, Selemium enhances glutathione peroxidase activity and prostacyclin relase in cultured human endothelia cell,Biol. Trace Element Res. 46, 113–123 (1994).

    Article  CAS  Google Scholar 

  17. S. V. S. Rana and P. R. Boorn, Antiperoxidative mechanism offered selenium against liver injury caused by cadmium and mercury in rats,Bull. Environ. Contam. Toxicol. 42, 120–124 (1992).

    Google Scholar 

  18. S. Kanno, Y. Aoki, J. S. Suzuki, N. Takeichi, S. Misawa, and K. T. Suzuki, Enhanced synthesis of metallothionein as a possible cause of abnormal copper accumulation in LEC rats,J. Inorg. Biochem. 56, 117–125 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. J. Torreilles and M. C. Guerin, Nickel(II) as a temporary catalyst for hydroxyl radical generation,FEBS Lett. 272, 58–60 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. World Health Organization], Nickel Environmemtal Health Criteria,108 (1991).

  21. N. A. Kostromina and V. P. Tikhonov, NMR study of nickel complexation with L-histidine,Theor. Exp. Chem. 16, 511–518 (1980).

    CAS  Google Scholar 

  22. K. S. Kasprzak, The role of oxidative damage in metal carinogenicity,Chem. Res. Toxicol. 4, 604–615 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. M. Levine, New concepts in the biology and biochemistry of ascobric acid,N Engl. J. Med. 314, 892–902 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. E. N. Frankel and W. E. Neff, Formation of malonaldehyde from lipid oxidation products,J. Exper. Biol. 21, 343–346 (1983).

    Google Scholar 

  25. D. D. Perrin and A. E. Wutt, Complex formation of zinc and cadmium with glutathione,Biochem. Biophys. Acta. 230, 96–104 (1971).

    PubMed  CAS  Google Scholar 

  26. S. J. Stohs and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions,Free Radical Med. 8, 321–336 (1995).

    Article  Google Scholar 

  27. M. Mirsa, R. Z. Rodriguez, and K. S. Kasprzak, Nickel induced lipid peroxidation in the rat: Correlation with nickel effect on antioxidant defense,Toxicology 64, 1–17 (1990).

    Google Scholar 

  28. P. C. Chan, O. G. Peller, and L. Kesner, Copper(II)-catalyzed lipid peroxidation in liposomes and erythrocyte membrane,Lipid 17, 331–337 (1982).

    Article  CAS  Google Scholar 

  29. M. Athar, K. Syed, S. K. Hasan, and R. C. Srivastava, Evidence for the involement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: implications for nickel carcinogenesis,Biochem. Biophys. Res. Commun. 147, 1276–1281 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. F. W. Sunderman, Jr., M. C. Reid, L. M. Bibeau, and J. V. Linden, Nickel induction of microsomal heme oxygenase activity in rodents,Toxicol. Appl. Pharmacol. 68, 87–95 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. S. I. Rapaport,Introduction to Hematology, J. B. Lippincott, Philadelphia, pp. 39–40 (1987).

    Google Scholar 

  32. J. A. Imlay, S. M. Chin, and S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and vitro,Science 240, 640–642 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. M. Chvapil, Effects of zinc on cells and biomembranes,Med. Clin. North Am. 60, 799–812 (1972).

    Google Scholar 

  34. I. Fridovich, Superoxide dismutases: Regularities and irregularities,Harvey Lect. 79, 51–75 (1985).

    Google Scholar 

  35. I. Fridovich, Superoxide dismutases. Anadaptation to a paramagnetic gas,J. Biol. Chem. 264, 7761–7764 (1989).

    PubMed  CAS  Google Scholar 

  36. R. E. Rodrigue, M. Misra, S. L. North, and K. S. Kasprzak, Nickel-induced lipid peroxidation in the liver of different strains of mice and its relation to nickel effects on antioxidant systems,Toxicol. Lett. 57, 269–281 (1991).

    Article  Google Scholar 

  37. H. R. Warner, Super dismutase, aging and degenerative disease,Free Radical Biol. Med. 17, 249–258 (1994).

    Article  CAS  Google Scholar 

  38. T. Yamada, T. Agui, Y. Suzuki, M. Sato, and K. Matsumoto, Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in Long-Evans Cinnamon mutant rat,J. Biol. Chem. 268, 8965–8971 (1993).

    PubMed  CAS  Google Scholar 

  39. J. Koropatonick and M. G. Cherian, A mutant mouse (tx) with increased hepatic metallothionein stability and accumulation,Biochem. J. 296, 443–449 (1994).

    Google Scholar 

  40. M. A. Dunn, T. L. Blalock, and R. J. Cousins, Metallothionein,Proc. Soc. Exp. Biol. Med. 185, 107–119 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY., Huang, YL. & Lin, TH. lipid peroxidation in liver of mice administrated with nickel chloride. Biol Trace Elem Res 61, 193–205 (1998). https://doi.org/10.1007/BF02784030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784030

Index entries

Navigation