Skip to main content
Log in

A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodide and acrylamide were applied simultaneously in a doublequenching experiment to compare acrylamide quenching constants for internal and external fluorophores of high-density lipoproteins (HDL1 and HDL2) from manganese-adequate (MnA) and deficient (MnD) rats, free of the electrostatic effects associated with iodide. In MnA HDL1 compared to MnD HDL1, the acrylamide quenching constant for external fluorophores was different (P < 0.1). In MnA HDL2, there were two populations of fluorophores accessible to acrylamide, whereas in MnD HDL2, all fluorophores were accessible to both quenchers. We concluded that there were structural (local environmental) differences, possibly charge-related, around the external fluorophores, and a slightly larger population of buried fluorophores in the MnD HDL1 compared with MnA HDL1. In MnA HDL2, one-third of the fluorophores were accessible to iodide, and all external and internal fluorophores were accessible to acrylamide, whereas in MnD HDL2, all fluorophores were accessible to both quenchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kawano, D. M. Ney, C. L. Keen, and B. O. Schneeman, Altered high density lipoprotein composition in manganese-deficient Sprague-Dawley and Wistar rats,J. Nutr. 117, 902–906 (1987).

    PubMed  CAS  Google Scholar 

  2. C. D. Davis, D. M. Ney, and J. L. Greger, Manganese, iron and lipid interactions in rats,J. Nutr. 120, 507–513 (1990).

    PubMed  CAS  Google Scholar 

  3. D. J. Klimis-Tavantzis, P. N. Taylor, R. A. Lewis, A. L. Flores, and H. H. Patterson, Effects of dietary manganese deficiency on high density lipoprotein composition and metabolism in Sprague-Dawley rats,Nutr. Res. 13, 953–968 (1993).

    Article  CAS  Google Scholar 

  4. P. N. Taylor, H. H. Patterson, I. Wolinsky, and D. J. Klimis-Tavantzis, Manganese deficiency affects HDL1 and HDL2 composition in rats,Nutr. Res. 17, 1155–1162 (1997).

    Article  CAS  Google Scholar 

  5. P. N. Taylor, H. H. Patterson, and D. J. Klimis-Tavantzis, Manganese deficiency alters high-density lipoprotein subclass structure in the sprague-dawley rat,J. Nutr. Biochem. 7, 392–396 (1996).

    Article  CAS  Google Scholar 

  6. B. J. Friedman, J. H. Freeland-Graves, C. W. Bales, F. Behmardi, R. L. Shorey-Kutschke, R. A. Willis, J. B. Crosby, P. C. Trickett, and S. D. Houston, Manganese balance and clinical observations in young men fed a manganese-deficient diet,J. Nutr. 117, 133–143 (1987).

    PubMed  CAS  Google Scholar 

  7. P. Johnson and G. I. Lykken, Manganese and calcium absorption and balance in young women fed diets with varying amounts of manganese and calcium,J. Trace Element Exp. Med. 4, 19–35 (1991).

    CAS  Google Scholar 

  8. Q. Q. Dang, P. Douste-Blazy, R. Camare, and D. Galy, Fluorescence quenching by iodide ions of low density lipoproteins from normolipidemic and hypercholesterolemic type Ha subjects. Effect of low density lipoprotein-cholesterol and low density lipoprotein non-apolipoprotein-B,Chem. Phys. Lipids 36, 121–130 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. B. Somogyi, S. Papp, A. Rosenberg, I. Seres, J Matkó, G. R. Welch, and P. Nagy, A double-quenching method for studying protein dynamics: separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophores,Biochemistry 24, 6674–6679 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. M. R. Eftink and L. A. Selvidge, Fluorescence quenching of liver alcohol dehydrogenase by acrylamide,Biochemistry 21, 117–125 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. K. A. Hageman and M. R. Eftink, Fluorescence quenching of Trp-314 of liver alcohol dehydrogenase by oxygen,Biophys. Chem. 20, 201–207 (1984).

    Article  Google Scholar 

  12. P. G. Varley, D. T. F. Dryden, and R. H. Pain, Resolution of the fluorescence of the buried tryptophan in yeast 3-phosphoglycerate kinase using succinimide,Biochim. Biophys. Acta 1077, 19–24 (1991).

    PubMed  CAS  Google Scholar 

  13. G. Gonzalez and G. Tapia, Fluorescence study of the thyroxine-dependent conformational changes in human serum transthyretin,FEBS Lett. 297, 253–256 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. B. Somogyi and Z. Lakos, Protein dynamics and fluorescence quenching, /.Photochem. Photobiol. B: Biol. 18, 3–16 (1993).

    Article  CAS  Google Scholar 

  15. G. L. Mills, P. A. Lane, and P. K. Weech, The collection and preservation of blood plasma, in A Guidebook to Lipoprotein Technique. Laboratory Techniques in Biochemistry and Molecular Biology, vol.14, R. H. Burdon and P. H. van Knippenberg, eds., Elsevier, New York, pp. 449–459 (1984).

    Google Scholar 

  16. D. J. Mela, R. S. Cohen, and P. M. Kris-Etherton, Lipoprotein metabolism in a rat model of diet-induced adiposity, /.Nutr. 117, 1655–1662, (1987).

    CAS  Google Scholar 

  17. B. G. Johansson, Agarose gel electrophoresis,Scand. Clin. Lab. Invest. 29 (Suppl. 124), 7–19 (1972).

    Article  CAS  Google Scholar 

  18. J. Miller,Standards in Fluorescence Spectrometry, Chapman and Hall, London (1981).

    Google Scholar 

  19. B. C. MacDonald, S. J. Lvin, and H. H. Patterson,Anal. Chim. Acta 338, 155–162 (1997).

    Article  CAS  Google Scholar 

  20. O. Stern and M. Volmer, über die Abklingungszeit der Fluoreszenz,Phys. Z. 20, 183–188 (1919).

    CAS  Google Scholar 

  21. J. R. Lakowicz,Principles of Fluorescence Spectroscopy, Plenum, New York (1983).

    Google Scholar 

  22. S. S. Lehrer, Solute perturbation of protein fluorescence. The quenching of the tryptophan fluorescence of model compounds and of lysozyme by iodide ion,Biochemistry 10, 3254–3263 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Oschry and S. Eisenberg, Rat plasma lipoproteins: re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity, /.Lipid Res. 23, 1099–1106 (1982).

    CAS  Google Scholar 

  24. S. Eisenberg, Plasma lipoprotein conversions,Methods Enzymol. 129, 347–366 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. N. E. Miller, Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis,Am. Heart j. 113, 589–597 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. D. J. Klimis-Tavantzis, P. N. Taylor, and I. Wolinsky, Manganese, lipid metabolism and atherosclerosis, inManganese in Health and Disease, D. J. Klimis-Tavantzis, ed., CRC, Boca Raton, FL, pp. 87–100 (1994).

    Google Scholar 

  27. P. Alaupovic, Significance of apolipoproteins for structure, function, and classification of plasma lipoproteins,Methods Enzymol. 263, 32–60 (1996).

    PubMed  CAS  Google Scholar 

  28. G. Pifat, L. Udovicic, J. Brnjas-Kraljevic, G. Jürgens, A. Holasek, and J. N. Herak, Competitive ion binding to low density lipoproteins: an electron spin resonance study,Chem. Phys. Lipids 46, 99–105 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. R. W. Mahley and T. L. Innerarity, Lipoprotein receptors and cholesterol homeostasis,Biochim. Biophys. Acta 737, 197–222 (1983).

    PubMed  CAS  Google Scholar 

  30. R. Ekanayake, Ultrastructural evidence for adverse effects on aorta and liver in rats fed a short term manganese-deficient diet, MS thesis, University of Maine, Orono, ME, USA (1995).

    Google Scholar 

  31. P. Yang and D. Klimis-Tavantzis, Effect of dietary manganese on arterial glycosaminoglycan metabolism,FASEB J. 9, A576 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, P.N., Patterson, H.H. & Klimis-Tavantzis, D.J. A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency. Biol Trace Elem Res 60, 69–80 (1997). https://doi.org/10.1007/BF02783310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783310

Index Entries

Navigation