Skip to main content
Log in

Glucocorticoid and polyamine involvement in zinc uptake by COMMA-1D mammary epithelial cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective was to determine if a mammary cell line shows glucocorticoid stimulation of Zn uptake, and to determine whether polyamines mediate this stimulation.65Zn uptake by COMMA-1D mouse mammary epithelial cells over a 24-h period increased significantly in cells administered 10−7 or 10−6 M hydrocortisone. Incorporation of65Zn over a 1-h period was not hydrocortisone-responsive, suggesting that these incubation times represent uptake into different pools. The rate of entry into the cells over a 15-min period was significantly increased by supplementing cells with hydrocortisone with or without prolactin. Initially, cells grown in lactogenic hormone-supplemented media (10−6 M hydrocortisone+5μg/mL ovine prolactin) had up to 65% greater65Zn uptake over 24 h than cells in nonsupplemented growth media.65Zn uptake from hormone media with the spermidine synthesis inhibitor methylglyoxal-bis-(guanylhydrazone) (MGBC, 10−5 M) added was less than from growth media. Exogenous spermidine (10−6-10−3 M) added to the MGBG+hormone media increased65Zn uptake. Difluoromethylornithine (DFMO), an inhibitor of spermidine synthesis that blocks ornithine decarboxylase, caused a slight dose-dependent decrease in65Zn uptake over the range 10−6-5×10−3 M(p<0.002) and tended to decrease65Zn-uptake in lactogenic hormone-stimulated cells with 8 h of incubation, but not at other times. These data show that Zn uptake in mammary epithelial cells can be hormonally mediated by glucocorticoids and suggest that polyamines may be intracellular mediators of this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Cox,Mol. Pharmacol. 4, 510 (1968).

    PubMed  CAS  Google Scholar 

  2. M. Karin, E. P. Slater, and H. R. Herschman,J. Cell. Physiol. 106, 63 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. S. J. Vaillancourt, and J. C. Allen,Biol. Trace Element Res. 30, 185 (1991).

    Article  CAS  Google Scholar 

  4. R. W. Turkington, G. C. Majumber, N. Kadohama, J. H. MacIndoe, and W. J. Frantz,Recent Progr. Horm. Res. 29, 417 (1973).

    PubMed  CAS  Google Scholar 

  5. R. J. Fitzgerald and H. E. Swaisgood,Arch. Biochem. Biophys. 268, 239 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. G. Musci and L. J. Berliner,Biochemistry 24, 6945 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. T. Oka, inBiochemistry of Lactation, T. B. Mepham, ed., Elsevier, New York, 1983, p. 381.

    Google Scholar 

  8. K. G. Danielson, C. J. Oborn, E. M. Durban, J. S. Butel, and D. Medina.Proc. Natl. Acad. Sci. USA 81, 3756 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. J. C. Allen and J. W. Mills,In Vitro Cell. Develop. Biol. 24, 588 (1988).

    Article  CAS  Google Scholar 

  10. Statistical Analysis System,SAS User's Guide: Statistics. SAS Inst. Inc, Cary, NC, 1985.

    Google Scholar 

  11. M. Bradford,Anal. Biochem. 72, 248 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. L. Wilkinson,SYSTAT, the System for Statistics. SYSTAT Inc. Evanston, IL, 1987.

    Google Scholar 

  13. D. J. Bobilya, M. Briske-Anderson, L. K. Johnson, and P. G. Reeves,J. Nutr. Biochem. 2, 565 (1991).

    Article  CAS  Google Scholar 

  14. T. Oka and J. W. Perry,J. Biol. Chem. 249, 7647 (1974).

    PubMed  CAS  Google Scholar 

  15. T. Oka and J. W. Perry,J. Biol. Chem. 249, 3586 (1974).

    PubMed  CAS  Google Scholar 

  16. T. Oka and Y. J. Topper,J. Biol. Chem. 246, 7701 (1971).

    PubMed  CAS  Google Scholar 

  17. M. L. Failla and R. J. Cousins,Biochem. Biophys. Acta 543, 293 (1978).

    PubMed  CAS  Google Scholar 

  18. R. J. Cousins,Physiol. Rev. 65, 238 (1985).

    PubMed  CAS  Google Scholar 

  19. M. P. Richards and R. J. Cousins,J. Nutr. 106, 1591 (1976).

    PubMed  CAS  Google Scholar 

  20. S. L. Feldman, M. L. Failla, and R. J. Cousins,Biochem. Biophys. Acta 544, 638 (1978)

    PubMed  CAS  Google Scholar 

  21. J. M. Hempe, J. M. Carlson, and R. J. Cousins,J. Nutr. 121, 1389 (1991).

    PubMed  CAS  Google Scholar 

  22. L. T. Hager and R. D. Palmiter,Nature 291, 340 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. T. C. A. McGann, W. Buchheim, R. D. Kearney, and T. Richardson,Biochim. Biophys. Acta 760, 415 (1983).

    PubMed  CAS  Google Scholar 

  24. R. J. Matusik and J. M. Rosen.Endocrinology 106, 52–59 (1980).

    Article  Google Scholar 

  25. H. G. Williams-Ashman and J. Seidenfeld,Biochem. Pharmacol. 35, 1217 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. S. A. McCormack and L. R. Johnson.Am J. Physiol. 260 (Gatrointest. Liver Physiol. 23), G795 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J.C., Vaillancourt, S.J. & Haedrich, L. Glucocorticoid and polyamine involvement in zinc uptake by COMMA-1D mammary epithelial cells. Biol Trace Elem Res 39, 229–243 (1993). https://doi.org/10.1007/BF02783193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783193

Index Entries

Navigation