Skip to main content
Log in

Adverse reproductive and developmental effects inXenopus from insufficient boron

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Frog embryo teratogenesis assay—Xenopus (FETAX) was utilized as a model system to evaluate the effects on embryo-larval development at various low boron (B) exposure levels in the culture media. Concentrations tested ranged from <1 to 5000 μg B/L. A statistically significant (P < 0.05) increase in malformations was observed at ≤ 3 μg B/L, but not at the greater concentrations. Abnormal development of the gut, craniofacial region and eye, visceral edema, and kinking of the tail musculature (abnormal myotome development) and notochord were observed. In subsequent studies, adult frogs were maintained for 28 d on two diets: (1) low B (LB, 62 μg B/kg) or (2) boric acid supplemented (BA, 1851 μg B/kg); the frogs were subsequently mated, and their offspring were cultured in media containing various levels of B. Results of the 28-d depletion studies indicated that frogs maintained under LB conditions produced a greater proportion of (1) necrotic eggs and (2) fertilized embryos, which abnormally gastrulated at a greater rate and were substantially less viable than embryos from frogs fed the BA diet. Malformations similar to those seen in the initial study were observed in embryos from the B-depleted adults maintained in an LB environment; 28 d on the LB diet enhanced the incidence of malformations associated with the LB culture media. These abnormalities were not observed in embryos cultured in ≥4 μg B/L from adults cultured on the BA diet. These studies showed that insufficient B reproducibly interfered with normalXenopus laevis development during organogenesis, substantially impaired normal reproductive function in adult frogs, and thus represent the first studies demonstrating the nutritional essentiality of B in an amphibian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Murray, A human health risk assessment of boron (boric acid and borax) in drinking water,Reg. Toxicol. Pharmacol. 22, 221–230 (1995).

    Article  CAS  Google Scholar 

  2. F. H. Nielsen, The saga of boron in food: from a banished food preservative to a beneficial nutrient in for humans,Curr. Top. Plant Biochem. Physiol. 10, 274–286 (1991).

    CAS  Google Scholar 

  3. F. H. Nielsen, Facts and fallacies about boron,Nutr. Today 23, 6–12 (1992).

    Article  Google Scholar 

  4. F. H. Nielsen, Biochemical and physiological consequences of boron deprivation in humans,Environ. Health Perspect. 102, 59–63 (1994).

    PubMed  CAS  Google Scholar 

  5. W. Mertz, Essential trace metals: new definitions based on new paradigms,Nutr. Rev. 51, 287–291 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. C. D. Hunt, The biochemical effects of physiologic amounts of dietary boron in animal nutritional models,Environ. Health Perspect. 102, 35–43 (1994).

    PubMed  CAS  Google Scholar 

  7. J. N. Dumont, T. W. Schultz, M. Buchanan, and G. Kai, Frog embryo teratogenesis assay: Xenopus-a short-term assay applicable to complex mixtures, inSymposium on the Supplication of Short-Term Bioassays in the Analysis of Complex Environmental Mixtures III, M. D. Waters, S. S. Sandhu, J. Lewtas, L. Claxton, N. Chemoff, and S. Nesnow, eds., Plenum, New York, pp. 393–405 (1983).

    Chapter  Google Scholar 

  8. D. J. Fort, D. A. Dawson, and J. A. Bantle, Evaluation of the development of a metabolic activation system for the frog embryo teratogenesis assay:Xenopus (FETAX), Teratogen.Carcinogen. Mutagen. 8, 251–263 (1988).

    Article  CAS  Google Scholar 

  9. D. A. Dawson, D. J. Fort, G. L. Smith, D. L. Newell, and J. A. Bantle, Comparative evaluation of the developmental toxicity of nicotine and cotinine with FETAX,Teratogen. Carcinogen. Mutagen. 8, 329–388 (1988).

    Article  CAS  Google Scholar 

  10. D. J. Fort, B. L. James, and J. A. Bantle, Evaluation of the developmental toxicity of five compounds with the frog embryo teratogenesis assay:Xenopus (FETAX),J. Appl. Toxicol. 9, 377–389 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. D. J. Fort and J. A. Bantle, Use of frog embryo teratogenesis assay—Xenopus (FETAX) and an exogenous metabolic activation system to evaluate the developmental toxicity of diphenylhydantoin,Fundam. Appl. Toxicol. 14, 20–733 (1990).

    Google Scholar 

  12. D. J. Fort and J. A. Bantle, Analysis of the mechanism of isoniazid-induced developmental toxicity with frog embryo teratogenesis assay—Xenopus (FETAX),Teratogen. Carcinogen. Mutagen. 10, 463–476 (1990).

    Article  CAS  Google Scholar 

  13. D. J. Fort, J. R. Rayburn, D. J. DeYoung, and J. A. Bantle, Assessing the efficacy of an Aroclor 1254-induced exogenous metabolic activation system for FETAX,Drug Chem. Toxicol. 14, 143–161 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. D. J. Fort, J. R. Rayburn, and J. A. Bantle, Mechanisms of acetaminophen-induced developmental toxicityin vitro, Drug Chem. Toxicol. 15, 329–350 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. D. J. Fort, E. L. Stover, J. R. Rayburn, M. A. Hull, and J. A. Bantle, Evaluation of the developmental toxicity of trichloroethylene and detoxification metabolites usingXenopus, Teratogen. Carcinogen. Mutagen. 13, 35–45 (1993).

    Article  CAS  Google Scholar 

  16. D. J. Fort, E. L. Stover, T. L. Propst, and J. A. Bantle, Evaluation of the developmental toxicities of theophylline, dimethyluric acid, and methylxanthine metabolites using FETAX,Drug Chem. Toxicol. 19, 267–278 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. D. J. Fort, E. L. Stover, T. L. Propst, M. A. Hull, and J. A. Bantle, Evaluation of the toxicities of coumarin, 4-hydroxycoumarin, and 7-hydroxycoumarin using FETAX,Drug Chem. Toxicol

  18. G. Greenhouse, The evaluation of toxic effect of chemicals in fresh water by using frog embryos and larvae,Environ. Contam. Toxicol. 20, 93–95 (1978).

    Article  Google Scholar 

  19. D. A. Dawson and J. A. Bantle, Development of a reconstituted water medium and initial validation of FETAX,J. Appl. Toxicol. 7, 237–244 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. J. A. Bantle, D. A. Dawson, and D. J. Fort, Identification of developmental toxicants using the frog embryo teratogenesis assay—Xenopus (FETAX),Hydrobiologia 188/189, 577–585 (1989).

    Article  Google Scholar 

  21. D. A. Dawson, D. J. Fort, D. L. Newell, and J. A. Bantle, Developmental toxicity testing with FETAX: evaluation of five validation compounds,Drug Chem. Toxicol. 12, 67–76 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. J. A. Bantle, D. J. Fort, J. R. Rayburn, D. J. DeYoung, and S. J. Bush, Further validation of FETAX: evaluation of the development toxicity of five known mammalian teratogens and non-teratogens,Drug Chem. Toxicol. 13, 267–283 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. D. J. DeYoung, J. A. Bantle, and D. J. Fort, Assessment of the developmental toxicity of ascorbic acid, sodium selenate, coumarin, serotonin and 13-cis retinoic acid using FETAX,Drug Chem. Toxicol. 14, 127–143 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. Standard Guide for Conducting the Frog Embryo Teratogenesis Assay—Xenopus (FETAX), American Society for Testing and Materials (ASTM), E1439-91 (1991).

  25. J. A. Bantle, J. N. Dumont, R. A. Finch, G. Linder, and D. J. Fort,Atlas of Abnormalities: A Guide for the Performance of FETAX, 2nd Ed., Oklahoma State University Press, Stillwater, Oklahoma (1998).

    Google Scholar 

  26. T. D. Sabourin and R. T. Faulk, Comparative evaluation of a short-term test for developmental effects using frog embryos, Branbury Report 26: Developmental Toxicology: Mechanisms and Risk, pp. 203–223 (1987).

  27. C. L. Courchesne and J. A. Bantle, Analysis of the activity of DNA, RNA, and protein synthesis inhibitors onXenopus embryo development,Teratogen. Carcinogen. Mutagen. 5, 177–193 (1985).

    Article  CAS  Google Scholar 

  28. J. N. Dumont, T. W. Schultz, and R. G. Epler, The response of the FETAX model to mammalian teratogens,Teratology 27, 39a (1983).

    Google Scholar 

  29. J. A. Bantle, D. J. Fort, and D. A. Dawson, Bridging the gap from short-term teratogenesis assays to human health hazard assessment by understanding common modes of teratogenic action, inProceedings of the 12th Aquatic Toxicology and Hazard Assessment: 12th vol., STM STP 1027, U. M. Cowgill and L. R. Williams, eds., American Society for Testing and Materials, Philadelphia, pp. 46–58 (1988).

    Google Scholar 

  30. D. J. Fort and E. L. Stover, Effect of low-level copper and pentachlorophenol exposure on various early life stages ofXenopus laevis, inProceedings of the Fifth Environmental Toxicology and Risk Assessment, ASTM STP 1306, D. A. Bengton and D. S. Henshel, eds., American Society for Testing and Materials, Philadelphia, pp. 188–203 (1996).

    Google Scholar 

  31. D. J. Fort and E. L. Stover, Development of short-term, whole embryo assays to evaluate detrimental effects on amphibian limb development and metamorphosis usingXenopus laevis, inProceedings of the Sixth Environmental Toxicology and Risk Assessment, ASTM STP 1317, F. J. Dwyer, T. R. Doane, and M. L. Hinman, eds., American Society for Testing and Materials, pp. 376–390 (1997).

  32. D. J. Fort, T. L. Propst, T. Schetter, E. L. Stover, P. L. Strong, and F. J. Murray, Teratogenic effects of insufficient boron, copper, and zinc inXenopus, Teratology,57, 252 (1998).

    Google Scholar 

  33. C. D. Hunt, Dietary boron deficiency and supplementation, inTrace Elements in Laboratory Rodents, R. R. Watson, ed., CRC, Boca Raton, FL, pp. 229–253 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fort, D.J., Propst, T.L., Stover, E.L. et al. Adverse reproductive and developmental effects inXenopus from insufficient boron. Biol Trace Elem Res 66, 237–259 (1998). https://doi.org/10.1007/BF02783141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783141

Index entries

Navigation