Skip to main content

Advertisement

Log in

Effects of high-molecular-weight polyvinyl chloride on Xenopus laevis adults and embryos: the mRNA expression profiles of Myf5, Esr1, Bmp4, Pax6, and Hsp70 genes during early embryonic development

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics and associated adverse effects have been on the global agenda in recent years. Because of its importance as a model organism for studies on developmental biology, Xenopus laevis has been chosen as the study animal in in vitro teratogenesis studies. FETAX test uses early-stage embryos of X. laevis to measure the potential of substances to cause mortality, malformation, and growth inhibition in developing embryos. The aim of this study was to examine the effects of high molecular weight polyvinyl chloride (HMW-PVC) on parental X. laevis frogs and their embryos using the FETAX test. To this purpose, a HMW-PVC dose of 1% of body weight/twice each week was provided to frogs by oral gavage throughout 6 weeks. After the procedure, oocytes and sperms of HMW-PVC-exposed frogs were fertilized and FETAX was applied to selected embryos. After the completion of a 96-h incubation period, tadpoles were examined, their live/dead status were determined, their lengths were measured, and their anomalies were photographed. Besides, excised organs of the parental frogs were referred to histopathology examination. On the other hand, the mRNA expression levels of Hsp70, Myf5, Bmp4, Pax6, and Esr1 genes were determined by applying real-time quantitative PCR method to cDNA which was synthesized from the total RNA of embryos. The results showed that treatment with HMW-PVC dose of 1% of body weight/twice each week caused malformations and decreased viability. Hsp70 and Pax6 gene expression levels significantly decreased in all assay groups, as compared with controls. Lung and intestine tissues showed normal appearance in histopatological examination. Further research is required to explain the whole effects of HMW-PVC exposure on X. laevis embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Ackerman S (1992) Discovering the brain (1992). Washington (DC): National Academies Press (US)

  • Ahrendt C, Perez-Venegas DJ, Urbina M, Gonzalez C, Echeveste P, Aldana M, Pulgar J, Galbán-Malagón CC (2020) Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar Pollut Bull 2020 151:110795. https://doi.org/10.1016/j.marpolbul.2019.110795

    Article  CAS  Google Scholar 

  • Anbumani S, Kakkar P (2018) Ecotoxicological effects of microplastics on biota: a review. Environ Sci Pollut Res Int 25(15):14373–14396. https://doi.org/10.1007/s11356-018-1999-x

    Article  CAS  Google Scholar 

  • Assas M, Qiu X, Chen K, Ogawa H, Xu H, Shimasaki Y, Oshima Y (2020) Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. Mar Pollut Bull 158:111446. https://doi.org/10.1016/j.marpolbul.2020.111446

    Article  CAS  Google Scholar 

  • ASTM (American Society forTesting Materials) (2004) Standart guide for conducting the frog embryo-teratogenesis assay—Xenopus, FETAX, E1439-98. In: ASTM Standards on 381 Biological Effects and Environmental Fate. vol.11.05.Philadelphia, pp. 447–457.

  • Babalola JO, Truter C, van Wyk HJ (2019) Mortality, teratogenicity and growth inhibition of threeglyphosate formulations using Frog Embryo TeratogenesisAssay-Xenopus. J Appl Toxicol 39:1257–1266

    CAS  Google Scholar 

  • Bachy I, Berthon J, Rétaux S (2002) Defining pallial and subpallial divisions in the developing Xenopus forebrain. Mech Dev 117(1-2):163–172

    CAS  Google Scholar 

  • Bharath MK, Srinivasalu S, Natesan U, Ayyamperumal R, Kalam SN, Anbalagan S, Sujatha K, Alagarasan C (2021) Microplastics as an emerging threat to the freshwater ecosystems of Veeranam lake in south India: a multidimensional approach. Chemosphere 264(Pt2):128502. https://doi.org/10.1016/j.chemosphere.2020.12850

    Article  Google Scholar 

  • Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A (2019) Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236:124335. https://doi.org/10.1016/j.chemosphere.2019.07.066

    Article  CAS  Google Scholar 

  • Banaee M, Gholamhosseini A, Sureda A, Soltanian S, Fereidouni MS, Ibrahim ATA (2020) Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). Environ Sci Pollut Res 28:9221–9234. https://doi.org/10.1007/s11356-020-11419-2

    Article  CAS  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Morton B (2009) Accumulation and Fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):1985–1998

    CAS  Google Scholar 

  • Baumann L, Schmidt-Posthaus H, Segner H, Wolf JC (2016) Comment on “Uptake and Accumulation of Polystyrene Microplastics in zebrafish (Danio rerio) and Toxic Effects in Liver. Environ Sci Technol 50(22): 12521-12522.

  • Bhagat J, Zang L, Nishimura N, Shimada Y (2020) Zebrafish: an emerging model to study microplastic and nanoplastic toxicity. Sci Total Environ 728:138707. https://doi.org/10.1016/j.scitotenv.2020.138707

    Article  CAS  Google Scholar 

  • Brandts I, Barría C, Martins MA, Franco-Martínez L, Barreto A, Tvarijonaviciute A, Tort L, Oliveira M, Teles M (2021) Waterborne exposure of gilthead seabream (Sparus aurata) to polymethylmethacrylate nanoplastics causes effects at cellular and molecular levels. J Hazard Mater 403:123590. https://doi.org/10.1016/j.jhazmat.2020.123590

    Article  CAS  Google Scholar 

  • Boga Pekmezekmek A, Binokay US, Akıllıoglu K, Sertdemir Y (2013) Evaluation of E330-induced developmental toxicity using FETAX. Turk J Biol 37:265–272

    CAS  Google Scholar 

  • Bonfanti P, Saibene M, Bacchetta R, Mantecca P, Colombo AA (2018) A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis. Aquat Toxicol 195:103-113. doi: 10.1016/j.aquatox.2017.12.007.

  • Browne MA, Galloway T, Thompson R (2007) Microplastic-an emerging contaminant of potential concern? Integr Environ Assess Manag 3(4):559–566

    Google Scholar 

  • Browne MA, Crump P, Nivens SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastics on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175e9179

    Google Scholar 

  • Campanella C, Bavisotto CC, Gammazza AM, Nikolic D, Rappa F, David S, Cappello F, Bucchieri F, Fais S (2014). Exosomal heat shock proteins as new players in tumour cell-to-cell communication. JCB [Internet]. [cited 15Jun.2021];3(1).

  • Chen L, Melendez J, Campbell K, Kuan CY, Zheng Y (2009) Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev Biol 325(1):162–170

    CAS  Google Scholar 

  • Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62(10):2199e2204–2199e2204

    Google Scholar 

  • Dawson DA, Bantle JA (1987) Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay-xenopus (FETAX). J Appl Toxicol 7(4):237–244

    CAS  Google Scholar 

  • De Felice B, Bacchetta R, Santo N, Tremolada P, Parolini M (2018) Polystyrene microplastics did not affect body growth and swimming activity in Xenopus laevis tadpoles. Environ Sci Pollut Res 25:34644–34651

    Google Scholar 

  • Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, Zhu W, Geng J (2020) Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless? J Hazard Mater 396:122693. https://doi.org/10.1016/j.jhazmat.2020.122693

    Article  CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    CAS  Google Scholar 

  • Elso C, Lu X, Weisner PA, Thompson HL, Skinner A, Carver E, Stubbs L (2013) A reciprocal translocation dissects roles of Pax6 alternative promoters and upstream regulatory elements in the development of pancreas, brain, and eye. Genesis 51(9):630–646. https://doi.org/10.1002/dvg.22409 Epub 2013 Jul 23

    Article  CAS  Google Scholar 

  • Fainsod A, Steinbeisser H, De Robertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13(21):5015–5025

    CAS  Google Scholar 

  • Giordani J, Bajard L, Demignon J, Daubas P, Buckingham M, Maire P (2007) Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. PNAS 104(27):11310–11315

    CAS  Google Scholar 

  • Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8(5):817–820

    Google Scholar 

  • Gyrd-Hansen M, Nylandsted J, Jäättelä M (2004) Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle 3(12):1484–1485

    CAS  Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2115–2126

    CAS  Google Scholar 

  • Hu L, Su L, Xue Y, Mu J, Zhu J, Xu J, Shi H (2016) Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164:611–617

    CAS  Google Scholar 

  • Hurney CA, Babcock SK, Shook DR, Pelletier TM, Turner SD, Maturo J, Cogbill S, Snow MC, Kinch K (2015) Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum. Mech Dev 136:99–110. https://doi.org/10.1016/j.mod.2014.12.007

    Article  CAS  Google Scholar 

  • IBM Corp Released (2011) IBM SPSS statistics for windows, Version 20.0. Armonk NY:IBM Corp.

  • Jovanović B (2017) Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr Environ Assess Manag 13(3):510–515. https://doi.org/10.1002/ieam.1913

    Article  Google Scholar 

  • Jovanović B, Gökdağ K, Güven O, Emre Y, Whitley EM, Kideys AE (2018) Virgin microplastics are not causing imminent harm to fish after dietary exposure. Mar Pollut Bull 130:123–131

    Google Scholar 

  • Kao KR, Elinson R (1988) The entire mesodermal mantle behaves as Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol 127(1):64–77

    CAS  Google Scholar 

  • Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48(3):1638–1645

    CAS  Google Scholar 

  • Keren A, Bengal E, Frank D (2005) p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 228:73–86

    Google Scholar 

  • Lamar E, Kintner C (2005) The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors. Development 132:3619–3630

    CAS  Google Scholar 

  • Lee-Liu D, Méndez-Olivos EE, Muñoz R, Juan Larraín J (2017) The African clawed frog Xenopus laevis: a model organism to study regeneration of the central nervous system. Review Neurosci Lett 652:82–93. https://doi.org/10.1016/j.neulet.2016.09.054

    Article  CAS  Google Scholar 

  • Lindi C, Montorfano G, Rossi F, Gornati R, Rizzo AM (2001) Effect of ethanol exposure on Xenopus embryo lipid composition. AlcoholAlcohol 36:388–392

    CAS  Google Scholar 

  • Lo HKA, Chan KYK (2018) Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environ Pollut 233:588–595

    CAS  Google Scholar 

  • Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio Rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060

    CAS  Google Scholar 

  • Lusher AL, Hollman PCH, Mendoza-Hill JJ (2017) Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. Rome Italy.

  • Maguire RJ, Isaacs HV, Pownall ME (2012) Early transcriptional targets of MyoDlink myogenesis and somitogenesis. Dev Biol 371:256–268

    CAS  Google Scholar 

  • Malinich TD, Chou N, Sepulveda MS, Höök TO (2018) No Evidence of microplastic impacts on consumption or growth of larval Pimephales promelas. Environ Toxicol Chem 37(11):2912–2918

    CAS  Google Scholar 

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B 364:2097–2113

    CAS  Google Scholar 

  • Moreno N, Rétaux S, González A (2008) Spatio-temporal expression of Pax6 in Xenopus forebrain. Brain Res 6(1239):92–99. https://doi.org/10.1016/j.brainres.2008.08.052

    Article  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Newyork&London: Garland Publishing INC

  • Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, Wollenberger L, Santos EM, Paull GC, Van Look KJW, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2047–2062

    CAS  Google Scholar 

  • Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 99(4):2020–2025

    CAS  Google Scholar 

  • Peng Y, Yang PH, Ng SS, Wong OG, Liu J, He ML, Kung HF, Lin MC (2004) A critical role of Pax6 in alcohol-induced fetal microcephaly. Neurobiol Dis 16(2):370–376

    CAS  Google Scholar 

  • Piccolo S, Sasa Y, Lu B, Robertis EMD (1996) Dorsoventral patterning in xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86(4:589–598

    Google Scholar 

  • Piri N, Kwong JM, Gu L, Caprioli J (2016) Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 52:22–46

    CAS  Google Scholar 

  • Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3(3):71–85

    Google Scholar 

  • Ryan PG, Moore CJ, van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):1999–2012

    CAS  Google Scholar 

  • Sadlon TJ, Lewis ID, D'Andrea RJ (2004) BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 22(4):457–474

    CAS  Google Scholar 

  • Shabbir S, Faheem M, Ali N, Kerr PG, Wang LF, Kuppusamy S, Li Y (2020) Periphytic biofilm: an innovative approach for biodegradation of microplastics. Sci Total Environ 15(717):137064

    Google Scholar 

  • Segundo LS, Martini F, Pablos MV (2013) Gene expression responses for detecting sublethal effects of xenobiotics and whole effluents on a Xenopus laevis embryo assay. Environ Toxicol Chem 32(9):2018–2025

    Google Scholar 

  • Shaxson L (2009) Structuring policy problems for plastics, the environment and human health: reflections from the UK. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2141–2151

    Google Scholar 

  • Smith M, Love DC, Rochman CM, Neff RA (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5:375–386

    CAS  Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2127–2139

    CAS  Google Scholar 

  • Vasilyeva TA, Voskresenskaya AA, Pozdeyeva NA, Marakhonov AV, Zinchenko RA (2018) Pax6 gene characteristic and causative role of Pax6 mutations in inherited eye pathologies. Russ J Genet 54:995–1002

    CAS  Google Scholar 

  • Wang C, Xing R, Sun M, Ling W, Shi W, Cui S, An L (2020) Microplastics profile in a typical urban river in Beijing. Sci Total Environ 15(743):140708. https://doi.org/10.1016/j.scitotenv.2020.140708

    Article  CAS  Google Scholar 

  • Weis J, Andrews CJ, Dyksen JE, et al. (2015) Human health impact of microplastics and nanoplastics. NJDEP - Science Advisory Board.

  • Wibowo YG, Maryani AT, Rosanti D, Rosarina D (2019) Microplastic in marine environment and its impact.Sainmatika 16:1.

  • Wright A, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms. A review Stephanie L Environ Pollut 178:483–492

    CAS  Google Scholar 

  • Yamaguchi Y, Shinagawa A (1983) Marked alteration at midblastula transition in the effect of lithium on formation of the larval body pattern of Xenopus laevis. Develop Growth Differ 31(6):531–541

    Google Scholar 

Download references

Funding

This study was supported by the Çukurova University Research Fund (I.U.BAP) (Project no: TSA-2019-11793).

Author information

Authors and Affiliations

Authors

Contributions

Ayper Boga Pekmezekmek: ınvestigation, writing—original draft-,supervision, project administration; Mustafa Emre: ınvestigation, Methodology, Supervision; Seyda Erdogan: histopathological analysis; Bertan Yılmaz: genetic analysis; Yaşar sertdemir: statistics; Erdal Tunc: writing—review and editing; Yılmaz Emre: supervision.

Corresponding author

Correspondence to Ayper Boga Pekmezekmek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

The study entitled “Effects of high-molecular-weight polyvinyl chloride on X. laevis adultes and embryos: the mRNA expression profiles of Myf5, Esr1, Bmp4, Pax6, and Hsp70 genes during early embryonic development” was approved by Cukurova University Health Sciences Assay Application and Research Center. Decision No: 4(5) on July 8, 2019.

Additional information

Responsible Editor: Bruno Nunes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekmezekmek, A.B., Emre, M., Erdogan, S. et al. Effects of high-molecular-weight polyvinyl chloride on Xenopus laevis adults and embryos: the mRNA expression profiles of Myf5, Esr1, Bmp4, Pax6, and Hsp70 genes during early embryonic development. Environ Sci Pollut Res 29, 14767–14779 (2022). https://doi.org/10.1007/s11356-021-16527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16527-1

Keywords

Navigation