Skip to main content
Log in

Calcium equally increases the internal calcium recirculation fraction before and after β-blockade in canine left ventricles

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

We studied whether intracoronary Ca administration after β-blockade would increase the internal Ca recirculation fraction (RF) analogously to the Ca administration before β-blockade. This was performed in excised cross-circulated canine hearts. We analyzed the exponential decay component of the postextrasystolic potentiation (PESP) following a spontaneous extrasystole. All the PESPs decayed in alternans with atrial pacing at a constant rate. We obtained the time constant (τe) of the monoexponential decay component of the alternans PESP. An increment of intracoronary Ca by 1.5mmol/1 enhanced the left ventricular contractility indexE max (end-systolic maximum elastance) by 2.5 times before and after β-blockade with propranolol. The intracoronary Ca after β-blockade slightly but significantly increased τe, and hence increased RF calculated from τe by RF=exp(−1/τe). This was analogous to the slightly increased τc and RF with Ca before β-blockade. We speculate that the myocardial cyclic AMP-dependent phosphorylation level would not significantly alter the effect of intracoronarily administered Ca on myocardial Ca handling, in terms of τe and RF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morad M, Goldman Y (1973) Excitation-contraction coupling in heart muscle: membrane control of development of tension. Prog Biophys Mol Biol 27:257–313

    Article  Google Scholar 

  2. Seed WA, Noble MIM, Walker JM, Miller GAH, Pidgeon J, Redwood D, Wanless R, Franz MR, Schettler M, Schaefer J (1984) Relationships between beat-to-beat interval and the strength of contraction in the healthy and diseased human heart. Circulation 70:799–805

    PubMed  CAS  Google Scholar 

  3. Yue DT, Burkhoff D, Franz MR, Hunter WC, Sagawa K (1985) Postextrasystolic potentiation of the isolated canine left ventricle: relationship to mechanical restitution. Circ Res 56:340–350

    PubMed  CAS  Google Scholar 

  4. ter Keurs HEDJ, Gao WD, Bosker H, Drake-Holland AJ, Noble MIM (1990) Characterization of decay of frequency induced potentiation and postextrasystolic potentiation. Cardiovasc Res 24:903–910

    Article  PubMed  Google Scholar 

  5. Noble MIM, Seed WA (eds) (1992) The interval-force relationship of the heart: Bowditch revisited. Cambridge University Press, Cambridge, UK

    Google Scholar 

  6. Araki J, Takaki M, Matsushita T, Matsubara H, Suga H (1994) Postextrasystolic transient contractile alternans in canine hearts. Heart Vessels 9:241–248

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu J, Takaki M, Kohno K, Araki J, Matsubara H, Suga H (1995) Sinusoidal and exponential decays of postextrasystolic transient alternans in excised blood-perfused canine hearts. Jpn J Physiol 45:837–848

    Article  PubMed  CAS  Google Scholar 

  8. Hata Y, Shimizu J, Hosogi S, Matsubara H, Araki J, Ohe T, Takaki M, Takasago T, Taylor TW, Suga H (1997) Ryanodine decreases internal Ca2+ recirculation fraction of the canine heart as studied by postextrasystolic transient alternans. Jpn J Physiol 47:521–530

    Article  PubMed  CAS  Google Scholar 

  9. Syuu Y, Araki J, Lee S, Suzuki S, Mizuno J, Mohri S, Mikane T, Shimizu J, Takaki M, Suga H (1998) Effects of Ca2+ and epinephrine on Ca2+ recirculation fraction and total Ca2+ handling in canine left ventricles. Jpn J Physiol 48:123–132

    Article  PubMed  CAS  Google Scholar 

  10. Ohgoshi Y, Goto Y, Kawaguchi O, Yaku H, Takaoka H, Hata K, Takasago T, Suga H (1992) Epinephrine and calcium have similar oxygen costs of contractility. Heart Vessels 7:123–132

    Article  PubMed  CAS  Google Scholar 

  11. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983) Effects of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53:306–318

    PubMed  CAS  Google Scholar 

  12. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    PubMed  CAS  Google Scholar 

  13. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  14. Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rew 15:601–652

    CAS  Google Scholar 

  15. Ravens U, Link S, Gath J, Noble MIM (1995) Postrest potentiation and its decay after inotropic interventions in isolated rat heart muscle. Pharmacol Toxicol 76:9–16

    PubMed  CAS  Google Scholar 

  16. Drake-Holland AJ, Sitsapesan R, Herbaczynska-Cedro K, Seed WA, Noble MIM (1992) Effect of adrenalin on cardiac force-interval relationship. Cardiovasc Res 26:496–501

    PubMed  CAS  Google Scholar 

  17. Bers DM, Bassani JW, Bassani RA (1996) Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann NY Acad Sci 779:430–442

    Article  PubMed  CAS  Google Scholar 

  18. Tada M, Inui M, Yamada M, Kadoma M, Kuzuya T, Abe H, Kakiuchi S (1983) Effects of phospholamban phosphorylation catalyzed by adenosine 3′:5′-monophosphate- and calmodulin-dependent protein kinase on calcium transport ATPase of sarcoplasmic reticulum. J Mol Cell Cardiol 15:335–346

    Article  PubMed  CAS  Google Scholar 

  19. Carafoli E (1995) Regulation of calcium signaling in cells. In: Sotelo JR, Benech JC (eds) Calcium and cellular metabolism: transport and regulation. Plenum, New York, pp 1–15

    Google Scholar 

  20. Hicks MJ, Shigekawa M, Katz AM (1979) Mechanism by which cyclic adenosine 3′:5′-monophosphate-dependent protein kinase stimulated calcium transport in cardiac sarcoplasmic reticulum. Circ Res 44:384–391

    PubMed  CAS  Google Scholar 

  21. Adler D, Wong AYK, Mahler Y, Klassen GA (1985) Model of calcium movements in the mammalian myocardium: interval-strength relationship. J Theor Biol 113:379–394

    Article  PubMed  CAS  Google Scholar 

  22. Adler D, Wong AYK, Mahler Y (1985) Model of mechanical alternans in the mammalian myocardium. J Theor Biol 117:563–577

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki S, Araki J, Morita T, Mohri S, Mikane T, Yamaguchi H, Sano S, Ohe T, Hirakawa M, Suga H (1998) Ventricular contractility in atrial fibrillation to predictable by mechanical restitution and potentiation. Am J Physiol (in press)

  24. Sipido KR, Wier WG (1991) Flux of Ca2+ across the sarcoplasmic reticulum of guinea-pig cardiac cells during excitation-contraction coupling. J Physiol (Lond) 435:605–630

    CAS  Google Scholar 

  25. Kusuoka H, Marban E (1994) Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? J Clin Invest 93:1216–1223

    PubMed  CAS  Google Scholar 

  26. Somlyo AV, Shuman H, McClellan G, Somlyo AP (1977) Comparison of sarcoplasmic reticulum in situ by electron probe. X-ray microanalysis. Nature 268:556–558

    Article  PubMed  CAS  Google Scholar 

  27. Shimizu J, Matsubara H, Kohno K, Araki J, Takaki M, Suga H (1996) Transient mechanical alternans component always exists in postextrasystolic potentiation with and without compensatory pause (abstract). Circulation 94 (Suppl 1): I-724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was partly supported by Grants-in-Aid for Scientific Research (07508003, 09470009, 10770307, 10558136, 10877006) from the Ministry of Education, Science, Sports and Culture, a Research Grant for Cardiovascular Diseases (7C-2) from the Ministry of Health and Welfare, 1997 and 1998 Frontier Research Grants for Cardiovascular System Dynamics from the Science and Technology Agency, and research grants from the Ryobi Teien Foundation, the Mochida Memorial Foundation, and the Nakatani Electronic Measuring Technology Association, all of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosogi, S., Araki, J., Syuu, Y. et al. Calcium equally increases the internal calcium recirculation fraction before and after β-blockade in canine left ventricles. Heart Vessels 12, 280–286 (1997). https://doi.org/10.1007/BF02766804

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766804

Key words

Navigation