Skip to main content
Log in

Space-charge field of a photorefractive grating in a planar waveguide based on a cubic crystal

  • Solid State Physics
  • Published:
Russian Physics Journal Aims and scope

Abstract

We consider the initial stage of formation of photorefractive gratings in planar waveguides based on cubic electrooptic crystals. We have obtained solutions for the components of the space-charge field for arbitrary ratios between parameters characterizing the spatial inhomogeneity of the light interference pattern in the waveguide as well as the diffusion length. The dependence of the component of the space-charge field parallel to the grating vector on its period in the initial section of the recording is also determined by the sum and difference of the transverse propagation constants of the interacting waveguide modes. We show that for waveguide interactions characterized by a small transverse scale of spatial inhomogeneity, the distributions of the space-charge field and the light intensity in the interference pattern are substantially different. These effects must be considered in analysis of the nonlinear interactions occurring in a refractive index grating due to the electrooptical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics [in Russian], Nauka, St. Petersburg (1992).

    Google Scholar 

  2. I. I. Itkin and S. M. Shandarov, Zh. Tekh. Fiz.,60, No. 11, 147–153 (1990); J. P. Nisius and E. Kratzig, Solid Stat. Commun.,53, No. 9, 743–746 (1985).

    Google Scholar 

  3. K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, Opt. Lett.,17, 1509–151 (1992).

    Article  ADS  Google Scholar 

  4. K. Tada, Yo. Kuhara, M. Tatsumi, and T. Yamaguchi, Appl. Opt.,21, No. 16, 2953–2959 (1982).

    ADS  Google Scholar 

  5. E. I. Leonov, S. É. Khabarov, M. S. Vershinin, V. A. Gusev, V. M. Orlov, and L. G. Khokha, Zh. Tekh. Fiz.,55, No. 11, 2215–2217 (1985); V. M. Abusev, E. I. Leonov, and A. A. Lipovskii, et al., Pis’ma v Zh. Tekh. Fiz.,14, No. 17, 1555–1560 (1988); E. I. Leonov, S. É. Khabarov, A. A. Lipovskii, and V. M. Abusev, Zh. Tekh. Fiz.,58, No. 11, 2181–2186 (1988).

    Google Scholar 

  6. Yu. F. Kargin, Yu. R. Salikaev, S. M. Shandarov, and I. V. Tsisar’; Pis’ma v Zh. Tekh. Fiz.,20, No. 24, 55–58 (1994); S. M. Shandarov, Yu. R. Salikaev, and Yu. F. Kargin, in: Technical Digest of Topical Meeting on Photorefractive Materials, Effects and Devices: PRM ’95, Boulder USA (1995), WPD23, pp. 520–523.

    Google Scholar 

  7. A. A. Solomko, Yu. A. Gaidai, and O. V. Kolokol’tsev, Zh. Éksp. Teor. Fiz.,61, No. 8, 125–133 (1991).

    Google Scholar 

  8. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics,22, 949–964 (1979).

    Google Scholar 

  9. Yu. Salikaev and S. Shandarov, J. Opt. Soc. Am.,B11, No. 9, 1727–1735 (1994).

    ADS  Google Scholar 

  10. T. Tamir, (ed.), Guided-Wave Optoelectronics, Springer-Verlag, Berlin (1988).

    Google Scholar 

Download references

Authors

Additional information

Tomsk University of Control Systems and Radioelectronics. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, pp. 65–73, June, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salikaev, Y.R., Shandarov, S.M. Space-charge field of a photorefractive grating in a planar waveguide based on a cubic crystal. Russ Phys J 40, 561–568 (1997). https://doi.org/10.1007/BF02766389

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766389

Keywords

Navigation