Skip to main content
Log in

δ15N examination of the Lindeman-Hutchinson-Peters theory of increasin omnivory with trophic height in aquatic foodwebs

  • Original Paper
  • Published:
Researches on Population Ecology

Abstract

The advent of stable nitrogen isotope analysis in ecological research has at last enabled precise identification of trophic position and omnivory due to the differential enrichment of15N over14N with progressive assimilation up the foodweb. I compiled literature data on δ15N values in freshwater and marine foodwebs to search for qeneral patterns in omnivory, specifically the supposition originally proposed by Lindeman (1942) and most recently advanced by Peters (1977), that omnivory should increase with trophic height or position. Omnivory, measured as average intraspecific variability in δ15N, was indeed found to increase with trophic height, such that species at the top of foodwebs were comprised of animals relying, on average, on energy originating from a mixture of different trophic categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broman, D., C. Naf, C. Rolff, Y. Zebuhr, B. Fry and J. Hobbie (1992) Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic.Envrionmental Toxicology and Chemistry 11: 331–345.

    Article  CAS  Google Scholar 

  • Burns, T. P. (1989) Lindeman’s contradiction and the trophic structure of ecosystems.Ecology 70: 1355–1362.

    Article  Google Scholar 

  • Cabana, G. and J. B. Rasmussen (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes.Nature 372: 255–257.

    Article  CAS  Google Scholar 

  • Cabana, G. and J. B. Rasmussen(1996) Comparing aquatic food chains using nitrogen isotopes: the problem of anthropogenic15N enrichment.Proceedings of the National Academy of Science of the USA 93: 10844–10847.

    Article  CAS  Google Scholar 

  • Cousins, S. (1980) A trophic continuum derived from plant structure, animal size and a detritus cascade.Journal of theoretical Biology 82: 607–618.

    Article  PubMed  CAS  Google Scholar 

  • Darnell, R. M. (1961) Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Louisiana.Ecology 42: 553–568.

    Article  Google Scholar 

  • DeMelo, R., R. France and D. J. McQueen (1992) Biomanipulation: hit or myth?Limnology and Oceanography 37: 192–207.

    Google Scholar 

  • DeNiro, M. J. and S. Epstein (1981) Influence of diet on the distribution of nitrogen isotopes in animals.Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Diehl, S. (1992) Fish predation and benthic community structure: the role of omnivory and habitat complexity.Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Diehl, S. (1993) Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships.Oikos 68: 151–157.

    Article  Google Scholar 

  • Diehl, S. (1995) Direct and indirect effects of omnivory in a littoral lake community.Ecology 76: 1727–1740.

    Article  Google Scholar 

  • Estep, M. L. and S. Vigg (1985) Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahonan Lake System, Nevada.Canadian Journal of Fisheries and Aquatic Sciences 42: 1712–1719.

    Article  CAS  Google Scholar 

  • France, R. (1992) The North American latitudinal gradient in species richness and geographical range of freshwater crayfish and amphipods.American Naturalist 139: 342–354.

    Article  Google Scholar 

  • France, R. L. (1994) Nitrogen isotopic composition of marine and freshwater invertebrates.Marine Ecology Progress Series 115: 205–207.

    Article  Google Scholar 

  • France, R. L. (1995a) Source variability in δ15N of autotrophs as a potential aid in measuring allochthony in freshwaters.Ecography 18: 318–320.

    Article  Google Scholar 

  • France, R. (1995b) Stable nitrogen isotopes in fish: literature synthesis on the influence of ecotonal coupling.Estuarine and Coastal Shelf Science 41: 737–742.

    Article  CAS  Google Scholar 

  • France, R. L. and R. H. Peters (1997) Ecosystem differences in13C enrichment in aquatic foodwebs.Canadian Journal of Fisheries and Aquatic Sciences 54: 1255–1258.

    Article  Google Scholar 

  • France, R. L., K. Westcott, P. del Giorgio, G. Klein and J. Kalff (1996) Vertical foodweb structure of freshwater Zooplankton assemblages estimated by stable nitrogen isotopes.Researches on Population Ecology 38: 283–287.

    Article  Google Scholar 

  • Goldwasser, L. and J. Roughgarden (1993) Construction and analysis of a large Caribbean food web.Ecology 74: 1216–1233.

    Article  Google Scholar 

  • Hall, S. J. and D. G. Raffaelli (1993) Food webs: theory and reality.Advances in Ecological Research 24: 187–239.

    Google Scholar 

  • Havens, K. E., L. A. Bull, A. L. Warren, T. L. Crisman, E. J. Philips and J. P. Smith (1996) Food wed structure in a subtropical lake ecosystem.Oikos 75: 20–32.

    Article  Google Scholar 

  • Hunter, M. D. and P. Price (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities.Ecology 73: 724–732.

    Google Scholar 

  • Hutchinson, G. E. (1959) Homage to Santa Rosalia or why are there so many kinds of animals?American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Kalff, J. (1996) Robert Henry Peters 1946–1996.Canadian Journal of Fisheries and Aquatic Sciences 53: 1692–1694.

    Article  Google Scholar 

  • Kercher, J. R. and H. H. Shugart (1975) Trophic structure, effective trophic position, and connectivity in food webs.American Naturalist 109: 191–206.

    Article  Google Scholar 

  • Kozlovsky, D. G. (1968) A critical evaluation of the trophic level concept 1. Ecological efficiencies.Ecology 49: 48–60.

    Article  Google Scholar 

  • Kling, G. W., B. Fry and W. J. O’Brien (1992) Stable isotopes and planktonic trophic structure in arctic lakes.Ecology 73: 561–566.

    Article  Google Scholar 

  • Lawton, J. H. (1992) Feeble links in food webs.Nature 355: 19–20.

    Article  Google Scholar 

  • Levine, S. (1980) Several measures of trophic structure applicable to complex food webs.Journal of theoretical Biology 83: 195–207.

    Article  Google Scholar 

  • Lindeman, R. L. (1942) The trophodynamic aspect of ecology.Ecology 23: 399–418.

    Article  Google Scholar 

  • Loehle, C. (1987) Hypothesis testing in ecology: psychological aspects and the importance of theory maturation.Quartenary Review of Biology 62: 397–409.

    Article  CAS  Google Scholar 

  • Martinez, N. D. (1991) Artifacts or attributes? effects of resolution on the Little Rock Lake food web.Ecological Monographs 61: 367–392.

    Article  Google Scholar 

  • Menge, B. and J. Sutherland (1987) Community regulation: variation in disturbance, composition, and predation in relation to environmental stress and recruitment.American Naturalist 130: 730–757.

    Article  Google Scholar 

  • Minagawa, M. and E. Wada (1984) Stepwise enrichment of15N along food chains: further evidence and the relation between15N and animal age.Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Mullin, M. M., G. H. Rau and R. W. Eppley (1984) Stable nitrogen isotopes in Zooplankton: some geographic and temporal variations in the North Pacific.Limnology and Oceanography 29: 1267–1273.

    Article  Google Scholar 

  • Nurnberg, G. (1996) Robert H. Peters … a person we will greatly miss.Lakeline 16: 24.

    Google Scholar 

  • Owens, N. J. P. (1987) Natural variations in15N in the marine environment.Advances in Marine Biology 24: 389–451.

    Article  Google Scholar 

  • Pace, M. L. and P. del Giorgio (1996) In memorium-Dr. Robert H. Peters.Marine Ecology Progress Series 142: 1.

    Article  Google Scholar 

  • Paine, R. T. (1980) Food webs: linkage, interaction strength and community infrastructure.Journal of Animal Ecology 49: 667–685.

    Google Scholar 

  • Paine, R. T. (1988) Food webs: road maps of interactions or grist for theoretical development.Ecology 69: 1648–1654.

    Article  Google Scholar 

  • Paine, R. T. (1992) Food-web analysis through field measurement of per capita interaction strength.Nature 355: 73–75.

    Article  Google Scholar 

  • Paine, R. T. (1996) Preface, pp. xi-x.In Polis, G. A. and Winemiller, K. O. (eds.)Food webs. Integration of patterns and dynamics. Chapman and Hall, New York.

    Google Scholar 

  • Peters, R. H. (1977) The unpredictable problems of trophodynamics.Environmental Biology of Fishes 2: 97–101.

    Article  Google Scholar 

  • Peters, R. H. (1988) Some general problems for ecology illustrated by food web theory.Ecology 69: 1673–1676.

    Article  Google Scholar 

  • Pimm, S. L. and J. H. Lawton (1978) On feeding on more than one trophic level.Nature 275: 542–544.

    Article  Google Scholar 

  • Polis, G. A. (1991) Complex trophic interactions in deserts: an empirical critique of food wed theory.American Naturalist 138: 123–155.

    Article  Google Scholar 

  • Rigler, F. H. (1975) The concept of energy flow and nutrient flow between trophic levels, pp. 15–26. In Dobben, W. H. and R. H. Lowe-McConnell (eds.)Unifying concepts in ecology. Junk Publ., The Hague.

    Google Scholar 

  • Schoener, T. W. (1989) Food webs from the small to the large.Ecology 70: 1559–1589.

    Article  Google Scholar 

  • Sprules, W. G. and J. E. Bowerman (1988) Omnivory and food chain length in Zooplankton food webs.Ecology 69: 483–499.

    Article  Google Scholar 

  • Stevens, G. C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics.American Naturalist 133: 240–256.

    Article  Google Scholar 

  • Ulanowicz, R. E. and W. E. Kemp (1979) Toward canonical trophic aggregations.American Naturalist 114: 871–883.

    Article  Google Scholar 

  • Vadas, R. L. (1990) The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America.Environmental Biology of Fishes 27: 285–302.

    Article  Google Scholar 

  • Vander Zanden, M. J. and J. B. Rasmussen (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout.Ecological Monographs 66: 451–477.

    Article  Google Scholar 

  • Vander Zanden, M. J., G. Cabana and J. B. Rasmussen (1997) Comparing trophic positon of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data.Canadian Journal of Fisheries and Aquatic Sciences 54: 1142–1158.

    Article  Google Scholar 

  • Warren, P. H. (1989) Spatial and temporal variation in the structure of a freshwater food web.Oikos 55: 299–311.

    Article  Google Scholar 

  • Warren, P. H. (1995) Estimating morphologically determined connectance and structure for food webs of freshwater invertebrates.Freshwater Biology 33: 213–221.

    Article  Google Scholar 

  • Winemiller, K. O. (1990) Spatial and temporal variation in tropical fish trophic networks.Ecological Monographs 60: 331–367.

    Article  Google Scholar 

  • Yoshioka, T., E. Wada and H. Hayashi (1994) A stable isotope study on seasonal food web dynamics in a eutrophic lake.Ecology 75: 835–846.

    Article  Google Scholar 

  • Yodzis, P. (1984) Energy flow and the vertical structure of real ecosystems.Oecologia 65: 86–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, R.L. δ15N examination of the Lindeman-Hutchinson-Peters theory of increasin omnivory with trophic height in aquatic foodwebs. Res Popul Ecol 39, 121–125 (1997). https://doi.org/10.1007/BF02765257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765257

Key words

Navigation