Skip to main content
Log in

Model atom approximation for estimating the localized bond energy based on the Morse potential

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A method for solving the vibrational problem by using an effective energy operator containing Morse potentials and new model atom approximations is developed. The approach is explained by reference to the trifluoromethylacetylene molecule where the model atom is a CCC or CC atomic group. Using certain assumptions for parameters in the spectrum, we managed to confirm the known experimental result of bond strengthening of the terminal hydrogen atom when the CC bond order increases and to predict the CH bond energy (462.5±4.6 kJ/mole). This procedure seems to be also effective for more complex adsorption problems where the model atom is a crystal. Given that the surface effect is predicted by the parameters of the method, the corresponding model energy operator is constructed. With appropriate spectral data, the approach guarantees very accurate estimations of adsorption bond energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Apostolova and A. V. Tulub,Opt Spektrosk.,76, No. 11, 584–590 (1994).

    CAS  Google Scholar 

  2. E. S. Apostolova and A. V. Tulub,Opt Spektrosk.,78, No. 4, 622–627 (1995).

    CAS  Google Scholar 

  3. E. S. Apostolova, “Localized approach in the theory of vibrational spectra of molecules and estimating the bond energies of separate atoms. Quantum chemical characteristics of the transition state,” Chemical Sciences Candidate’s Dissertation, St. Petersburg (1995).

  4. L. Halonen and M. S. Child,J. Chem. Phys.,79, No. 2, 559–570 (1983).

    Article  CAS  Google Scholar 

  5. F. Iachello and S. Oss,J. Chem, Phys.,99, No. 10, 7337–7349 (1993).

    Article  CAS  Google Scholar 

  6. G. V. Antonenko, T. D. Kolomiytsova, V. A. Kondaurov, and D. N. Sperkin,J. Mol. Struct.,275, 183–202 (1992).

    Article  CAS  Google Scholar 

  7. VonPuttkammer, H.-R. Dubai, and M. Quack,Faraday Discuss. Chem. Soc.,75, 197–210 (1983).

    Article  Google Scholar 

  8. C. V. Berney, L. R. Cousins, and F. A. Miller,Spectrochim. Acta,19, No. 12, 2019–2032 (1963).

    Article  CAS  Google Scholar 

  9. L. P. Zhigula, T. D. Kolomiytsova, and S. M. Melikova,Molecular Spectroscopy [in Russian], Vol. 8, Leningrad University Press, Leningrad (1990), pp. 198–211.

    Google Scholar 

  10. H.-R. Dubai, T. K. Ha, M. Lewerenz, and M. Quack,J. Chem. Phys.,91, No. 11, 6698–6713 (1989).

    Article  Google Scholar 

  11. A. J. Ross, H. G. Hollenstein, R. R. Marquardt, and M. Quack,Chem. Phys. Lett.,156, No. 5, 455–462 (1989).

    Article  CAS  Google Scholar 

  12. L. A. Gribov,Zh. Strukt. Khim.,33, No. 3, 164–167 (1992).

    CAS  Google Scholar 

  13. A. I. Pavlyuchko,Zh. Prikl. Spektrosk.,56, No. 3, 474–481 (1992).

    CAS  Google Scholar 

  14. A. I. Pavlyuchko and L. A. Gribov,Opt Spektrosk.,60, No. 3, 491–496 (1986).

    CAS  Google Scholar 

  15. K. P. Huber and G. Herzberg,Constants of Diatomic Molecules, Van Nostrand, New York (1979).

    Google Scholar 

  16. J. Heidberg, H. Stein, and E. Riehl,Phys. Rev. Lett.,49, No. 9, 666–669 (1982).

    Article  CAS  Google Scholar 

  17. J. Heidberg, I. Hussla, and Z. Szilagy,Vibrations at Surfaces, C. R. Brundle and H. Morawitz (eds.), Amsterdam (1983), pp. 53–58.

  18. J. Heidberg, H. Stein, E. Riehl, et al.,Surf. Sci,158, Nos. 1–3, 553–578 (1985).

    Article  CAS  Google Scholar 

  19. J. Heidberg, U. Noseck, M. Suhren, and H. Weiss,Ber. Bunsenges. Phys. Chem.,97, No. 3, 329–332 (1993).

    CAS  Google Scholar 

  20. E. Shustorovich (ed.),Metal-Surface Reaction Energetics. Theory and Applications to Heterogeneous Catalysis,Chemisorption, and Surface Diffusion, New York (1991).

  21. W. L. Smith and I. M. Mills,J. Mol. Spectrosc,11, No. 1, 11–38 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhumal Struktumoi Khimii, Vol. 38, No. 2, pp. 263–269, March–April, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolova, E.S., Tulub, A.V. Model atom approximation for estimating the localized bond energy based on the Morse potential. J Struct Chem 38, 212–217 (1997). https://doi.org/10.1007/BF02762648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762648

Keywords

Navigation