Skip to main content
Log in

On the choice electronic structure method to calculate the quartic potential energy surface for the vibrational calculation of polyatomic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A systematic study is made on the effects of electronic structure calculations on anharmonic spectra of polyatomic molecules. Our study is focused on the choice of electronic structure method and basis set to calculate the quartic potential energy surface (PES). We used two correlated methods Møller–Plesset perturbation theory and density functional theory with B3LYP functional and two different types of basis sets, aug-cc-pVTZ and 6-311G(2d,2p) to calculate the PES and linear DMS. For the vibrational description, we used the vibrational self-consistent field theory and the vibrational coupled cluster theory in bosonic representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carney DG, Sprandel LL, Kern CW (1978) Adv Chem Phys 37:305

    CAS  Google Scholar 

  2. Bowman J (1986) Acc Chem Res 19:202

    Article  CAS  Google Scholar 

  3. Bowman JM (1978) J Chem Phys 68:608

    Article  CAS  Google Scholar 

  4. Christoffel KM, Bowman JM (1982) Chem Phys Lett 105:220

    Article  Google Scholar 

  5. Chaban GM, Jung JO, Gerber RB (1999) J Chem Phys 111:1823

    Article  CAS  Google Scholar 

  6. Jung JO, Gerber RB (1996) J Chem Phys 105:10332

    Article  CAS  Google Scholar 

  7. Gerber RB, Chaban GM, Brauer B, Miller Y (2005) In: Dykstra CE, Frenking G, Kim K, Suceria G (eds) Theory and applications of computational chemistry: the first forty years, chapter 9. Elsevier, Tokyo, pp 165–194

    Chapter  Google Scholar 

  8. Pele L, Brauer B, Gerber RB (2007) Theor Chem Acc 117:69

    Article  CAS  Google Scholar 

  9. Benoit DM (2006) J Chem Phys 125:244110

    Article  Google Scholar 

  10. Keceli M, Hirata S, Yagi K (2010) J Chem Phys 133:034110

    Article  Google Scholar 

  11. Matsunaga N, Chaban GM, Gerber RB (2002) J Chem Phys 117:3541

    Article  CAS  Google Scholar 

  12. Sibert EL (1988) J Chem Phys 88:4378

    Article  CAS  Google Scholar 

  13. McCoy AB, Sibert EL (1991) J Chem Phys 95:3476

    Article  CAS  Google Scholar 

  14. Iung C, Ribeiro F, Sibert EL (2006) J Phys Chem A 110:5420

    Article  CAS  Google Scholar 

  15. Rauhut G (2007) J Chem Phys 127:184109

    Article  Google Scholar 

  16. Heislbetz S, Rauhut G (2010) J Chem Phys 132:124102

    Article  Google Scholar 

  17. Carter S, Handy NC (1986) Comput. Phys Rep 5:117

    Article  Google Scholar 

  18. Barone V, Bloino J, Guido CA, Lipparini F (2010) Chem Phys Lett 496:157

    Article  CAS  Google Scholar 

  19. Nagalakshmi V, Lakshminarayana V, Sumithra G, Durga Prasad M (1994) Chem Phys Lett 217:279

    Article  Google Scholar 

  20. Prasad MD (2000) Indian J Chem 39A:196

    CAS  Google Scholar 

  21. Banik S, Pal S, Prasad MD (2008) J Chem Phys 129:134111

    Article  Google Scholar 

  22. Banik S, Pal S, Prasad MD (2010) J Chem Theory Comput 6:3198

    Article  CAS  Google Scholar 

  23. Banik S, Pal S, Prasad MD (2012) J Chem Phys 137:114108

    Article  Google Scholar 

  24. Banik S, Prasad MD (2012) Theor Chem Acc 131:1383

    Article  Google Scholar 

  25. Christiansen O (2004) J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  26. Seidler P, Christiansen O (2007) J Chem Phys 126:204101

    Article  Google Scholar 

  27. Yagi K, Hirata S, Hirao K (2008) Phys Chem Chem Phys 10:1781

    Article  CAS  Google Scholar 

  28. Christiansen O (2007) Phys Chem Chem Phys 9:2942

    Article  CAS  Google Scholar 

  29. Hirata S, Hermes MR (2014) J Chem Phys 141:184111

    Article  Google Scholar 

  30. Pfeiffer F, Rauhut G (2014) J Chem Phys 140:64110

    Article  Google Scholar 

  31. Neff M, Rauhut G (2009) J Chem Phys 131:124129

    Article  Google Scholar 

  32. Pfeiffer F, Rauhut G, Feller D, Peterson KA (2013) J Chem Phys 138:044331

    Article  Google Scholar 

  33. Hansen MB, Seidler P, Gyrffy W, Christiansen O (2010) J Chem Phys 133:114102

    Article  Google Scholar 

  34. Barone V (2005) J Chem Phys 122:014108

    Article  Google Scholar 

  35. Hansen MB, Christiansen O, Toffoli D, Kongsted J (2008) J Chem Phys 128:174106

    Article  Google Scholar 

  36. Rauhut G (2004) J Chem Phys 121:9313

    Article  CAS  Google Scholar 

  37. Carbonniere P, Lucca T, Pouchan C, Rega N, Barone V (2005) J Comput Chem 26:384

    Article  CAS  Google Scholar 

  38. Barone V (2004) J Chem Phys 120:3059

    Article  CAS  Google Scholar 

  39. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  40. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas o, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  42. Arponen J (1983) Ann Phys (NY) 151:311

    Article  CAS  Google Scholar 

  43. Arponen J, Bishop RF, Pajanne E (1987) Phys Rev A 36:2519

    Article  Google Scholar 

  44. Arponen J, Bishop RF, Pajanne E (1897) Phys Rev A 36:2539

    Article  Google Scholar 

  45. Sastry GM, Prasad MD (1993) Theor Chim Acta 89:193

    Article  Google Scholar 

  46. Latha GS, Prasad MD (1993) Theor Chim Acta 86:511

    Article  CAS  Google Scholar 

  47. Prasad MD (1994) Theor Chim Acta 88:383

    Article  CAS  Google Scholar 

  48. Silva AF, Soares DX, Faria SH, Bruns RE (2012) J Mol Struct 1009:49

    Article  CAS  Google Scholar 

  49. Stein SE, NIST chemistry webbook, NIST standard reference database number 69, national institute of standards and technology. http://webbook.nist.gov/chemistry/

  50. Smith AL (1982) In: Craver CD (ed) The Coblentz Society desk book of infrared spectra, 2nd edn. Coblentz Society, Kirkwood

    Google Scholar 

  51. Kagel RO, Powell DL, Overend J, Ramos MN, Bassi ABMS, Bruns RE (1982) J Chem Phys 77:1099

    Article  CAS  Google Scholar 

  52. Duncan JL, Nivellini GD, Tullini F, Fusina L (1990) Chem Phys Lett 165:362

    Article  CAS  Google Scholar 

  53. Wiberg KB, Walters VA, Wong KN, Colson SD (1984) J Phys Chem 88:6067

    Article  CAS  Google Scholar 

  54. Walters VA, Snavely DL, Colson SD, Wiberg KB, Wong KN (1986) J Phys Chem 90:592

    Article  CAS  Google Scholar 

  55. De Lorenzi A, Giorgianni S, Gambi A, Visinoni R, Stoppa P, Ghersetti S (1992) J Mol Spectrosc 151:322

    Article  Google Scholar 

  56. Smith DC, Neilsen JR, Claaseen HR (1950) J Chem Phys 18:326

    Article  CAS  Google Scholar 

  57. McKean DC, Veken BVD, Herrebout W, Law MM, Brenner MJ, Nemchick DJ, Craig NC (2010) J Phys Chem A 114:5728

    Article  CAS  Google Scholar 

  58. Krasnoshchekov SV, Craig NC, Stepanov NF (2013) J Phys Chem A 117:3041

    Article  CAS  Google Scholar 

  59. Nielsen JR, Claassen HH, Smith DC (1950) J Chem Phys 18:812

    Article  CAS  Google Scholar 

  60. Wong KN, Colson SD (1984) J Mol Spectrosc 104:129

    Article  CAS  Google Scholar 

  61. Partal F, Fernández-Gómez M, López-González JJ, Navarro A, Kearley GJ (2000) Chem Phys 261:239

    Article  CAS  Google Scholar 

  62. DiLella DP, Stidham HD (1980) J Raman Spectrosc 9:90

    Article  CAS  Google Scholar 

  63. Wiberg KB, Walters VA, Colson SD (1984) J Phys Chem 88:6067

    Article  CAS  Google Scholar 

  64. Walters VA, Snavely DA, Colson SD, Wong KN (1986) J Chem Phys 90:592

    Article  CAS  Google Scholar 

  65. Klots T (1998) Spectrochim Acta Part A 54:1481

    Article  Google Scholar 

  66. Boese AD, Martin JML (2004) J Phys Chem A 108:3085

    Article  CAS  Google Scholar 

  67. Barone V (2004) J Phys Chem A 108:4146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Professor M. Durga Prasad for his valuable suggestions and critical comments on this work. Financial support from UGC under D. S. Kothari post-doctoral fellowship scheme is acknowledged. I thank the referees for their inclusive comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Banik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, S. On the choice electronic structure method to calculate the quartic potential energy surface for the vibrational calculation of polyatomic molecules. Theor Chem Acc 135, 203 (2016). https://doi.org/10.1007/s00214-016-1962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1962-1

Keywords

Navigation