Skip to main content
Log in

Mach’s principle, Baryon conservation and Baryon mass

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Mach’s principle is viewed as being incorporated into relativity by means of Dicke’s scalar field theory. The assumption is made, however, that the scalar field interacts only with baryonic matter. Then it follows that the baryon current obeys an equation of continuity. Furthermore, by adopting the steady-state model of the Universe, the baryon mass becomes determined by the scalar field. Thus, both baryon conservation and the origin of the baryon mass can be regarded as a consequence of Mach’s principle. In order to ensure the unrestricted validity of the equivalence principle, one must allow for a pressure in the matter fields. Various cosmological consequences are discussed.

Riassunto

Si considera il principio di Mach incorporato nella relatività per mezzo della teoria del campo scalare di Dicke. Si fà, tuttavia, l’ipotesi che il campo scalare interagisca solo con la materia barionica. Ne segue che la corrente barionica obbedisce ad un’equazione di continuità. Inoltre, adottando il modello di stato stazionario dell’universo, la massa del barione viene determinata dal campo scalare. Cosi, si possono considerare la conservazione dei barioni e l’origine della massa barionica come conseguenze del principio di Mach. Allo scopo di assicurare la validità senza restrizioni del principio di equivalenza, si può ammettere che esista una pressione nei campi di materia. Si discutono varie conseguenze cosmologiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac:Troc. Boy. Soc, A165, 199 (1938).

    Article  ADS  Google Scholar 

  2. J. S. Bell andJ. K. Peering:Phys. Bev. Lett.,13, 348 (1964).

    Article  ADS  Google Scholar 

  3. T. D. Lee andC. N. Yang:Phys. Rev.,98, 1501 (1955).

    Article  ADS  Google Scholar 

  4. E. H. Dicke:Phys. Rev.,126, 1580 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Schwinger:Phys. Bev.,125, 397 (1962). See also,J. J. Sakueai:Ann. Phys.,11, 1 (1960); andP. Eoman:Nuovo Cimento,21, 747 (1961).

    MathSciNet  ADS  Google Scholar 

  6. C. Brans andE. H. Dicke:Phys. Rev.,124, 925 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  7. E. H. Dicke:Phys. Rev.,125, 2163 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. H. Dicke:Phys. Rev.,126, 1875 (1962). See also three articles by Dicke inGravitation and Relativity,H.-Y. Chiu andW. H. Hoffmann (editors) (New York, 1964).

    Article  MathSciNet  ADS  Google Scholar 

  9. K. F. Novobátzky:Ann. d. Phys.,11, 285 (1953). See also ref. (7).(10) D. W. Sciama:Month. Not. Boy. Astron. Soc.,113, 34 (1953). See also ref. (6,7).

    Article  Google Scholar 

  10. E. T. Whittaker:Proc. Boy. Soc, A149, 384 (1935).

    Article  ADS  Google Scholar 

  11. W. H. McCrea:Proc. Boy. Soc, A206, 562 (1951).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported in this paper has been sponsored by the U. S. Air Force, Office of Scientific Research, under Grant No. AF AFOSK-385-63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, P. Mach’s principle, Baryon conservation and Baryon mass. Nuovo Cim 37, 396–412 (1965). https://doi.org/10.1007/BF02749842

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02749842

Navigation