Skip to main content
Log in

Physical metallurgy of aluminum-lithium alloys

  • International Conference On Recent Advances In Materials And Processes
  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The addition of lithium to aluminium reduces the density and increases the elastic modulus; precipitation of the metastableδ′(Al3Li) phase from supersaturated Al-Li solid solution leads to appreciable increase in strength. The enhanced values for specific modulus and specific strength favour the use of the Al-Li alloys as structural materials for aerospace applications. However the binary alloys suffer from problems of poor ductility and toughness associated with strain localisation (resulting from the ease with whichδ′ particles are sheared during deformation), the presence ofδ′-free zones near grain boundaries and the heterogeneous nucleation of the equilibriumδ phase on the grain boundaries. These problems have been overcome by the development of ternary and quaternary alloys containing copper and magnesium. A small amount (∼0·1%) of zirconium is added to these alloys to improve the recrystallisation characteristics. The properties of alloys developed for commercial exploitation are briefly discussed. An overview of the physical metallurgy of the Al-Li alloys is presented with emphasis on the following features: (i) phase equilibria and precipitation reactions in Al-Li, Al-Cu-Mg, Al-Cu-Li and Al-Mg-Li systems and extension of these results to Al-Li-Cu-Mg alloys, (ii) insoluble particles and their effect on precipitation in the alloys, (iii) microstructural studies on Al-2·3%Li-1·2%Cu-0·7%Mg-0·12%Zr alloy, (iv) lithium depletion during solution treatment, (v) coarsening ofδ′ particles and development of precipitate-free zones near grain boundaries and (vi) microanalysis of the lithium containing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aluminium-lithium alloys III, (eds) Baker C, Gregson P J, Harris S J and Peel C 1986 The Institute of Metals, London

    Google Scholar 

  • Aluminum-lithium alloys (eds) Sanders T H and Starke E A 1981 TMS-AIME Warrendale, PA

    Google Scholar 

  • Aluminum-lithium alloys II, (eds) Sanders T H and Starke E A 1984-AIME, Warrendale, PA

    Google Scholar 

  • Abd El-Salam F, Eatah A I and Tawfik A 1983Phys. Status Solidi (a)75 379

    Article  CAS  Google Scholar 

  • Ahmad M 1987Metall. Trans. A18 635

    Google Scholar 

  • Ahmad M and Ericsson T 1985Scr. Metall. 19 457

    Article  CAS  Google Scholar 

  • Ahmad M and Ericsson T 1986Aluminum-lithium alloys III p. 509

  • Ardell A J 1972Acta Metall 20 61

    Article  Google Scholar 

  • Ball M D and Lloyd D J 1985Scr. Metall. 19 1065

    Article  CAS  Google Scholar 

  • Ball M D and Lagacé H 1986Aluminium-lithium alloys III p 555

  • Balmuth E S and Schmidt R 1981Aluminum-lithium alloys p 69

  • Bartges C, Tosten M H, Howell P R and Ryba E R 1987J. Mater. Sci. 22 1663

    Article  CAS  Google Scholar 

  • Baumann S F and Williams D B 1984Aluminum-lithium alloys II p 17

  • Bretz P E and Sawtell R R 1986Aluminium-lithium alloys III p 47

  • Ceresara S, Giarda A and Sanchez A 1977Philos. Mag. 35 97

    Article  CAS  Google Scholar 

  • Champier G and Samuel F H 1986Aluminium-lithium alloys III p 131

  • Chan H M and Williams D B 1985Philos. Mag. B52 1019

    Google Scholar 

  • Cocco G, Fagherazzi C and Schiffini L 1977J. Appl. Cryst. 10 325

    Article  Google Scholar 

  • Costas L P and Marshall R P 1962Trans. AIME 224 970

    Google Scholar 

  • Crooks R E and Starke E A 1984Metall. Trans. 15A 1367

    CAS  Google Scholar 

  • de Jong H 1984Aluminium 60 E587

  • Dinsdale K, Harris S J and Noble B 1981Aluminum-lithium alloys p 101

  • Field D J, Scamans G M and Butler E P 1984Aluminum-lithium alloys II p 657

  • Flower H M and Gregson P J 1987Mater. Sci. Technol. 3 81

    CAS  Google Scholar 

  • Flower H M, Gregson P J, Tite C N J and Mukhopadhyaya A K 1986Aluminum alloys: Their physical and mechanical properties (eds) Starke E A and Sanders T H, (Warley: Engineering Materials Advisory Service), Vol 2

    Google Scholar 

  • Fox S, Flower H M and McDarmaid D S 1986aScr. Metall. 20 1986

    Article  Google Scholar 

  • Fox S, Flower H M and McDarmaid D S 1986bAluminium-lithium alloys III p 263

  • Gayle F W, Levoy N F and VanderSande J B 1987J. Met. 39(5) 33

    CAS  Google Scholar 

  • Gregson P J and Flower H M 1986Aluminium technology ’86 (ed.) T Sheppard (London: Institute of Metals) p 423

    Google Scholar 

  • Gregson P J, Flower H M, Tite C N J and Mukhopadhyay A K 1986Mater. Sci. Technol. 2 349

    CAS  Google Scholar 

  • Hardy H K and Silcock J M 1955–56J. Inst. Met. 84 423

    Google Scholar 

  • Harris S J, Noble B and Dinsdale K 1984Aluminum-lithium alloys II p 219

  • Hono K, Abe T, Hess D R, Pickering H W, Howell P R, Hasegawa Y, Sakurai T, Sano N and Hirano K 1986Aluminum alloys: Their physical and mechanical properties, p 621

  • Huang J C and Ardell A J 1986Aluminium-lithium alloys III p 455

  • Jensrud O and Ryum N 1984Mater. Sci. Eng. 64 229

    Article  CAS  Google Scholar 

  • Jha S C, Sanders T H and Dayananda M 1987Acta Metall. 35 473

    Article  CAS  Google Scholar 

  • Kulwicki J H and Sanders T H 1984Aluminum-lithium alloys II p 31

  • Lavernia E J and Grant N J 1987J. Mater. Sci. 22 1521

    Article  CAS  Google Scholar 

  • Lifshitz I M and Slyozov V V 1959Soviet Physics JETP,35(8) 331

    Google Scholar 

  • Lifshitz I M and Slyozov V V 1961J. Phys. Chem. Solids 19 35

    Article  Google Scholar 

  • Loisseau A and Lapasset G 1986J. Phys. (Paris) 47 C3–331

    Article  Google Scholar 

  • Mahalingam K, Gu B P, Liedl G L and Sanders T H 1987Acta Metall. 35 483

    Article  CAS  Google Scholar 

  • Malis T 1986Aluminium-lithium alloys III p 347

  • Meyer P and Dubost B 1986Aluminium-lithium alloys III p 37

  • Noble B, McLaughlin I R and Thompson G 1970Acta Metall. 18 339

    Article  CAS  Google Scholar 

  • Noble B and Thompson G E 1971Met. Sci. J. 5 114

    Article  CAS  Google Scholar 

  • Nozato R and Nakai G R 1977Trans. Jpn. Inst. Metals 18 678

    Google Scholar 

  • Papazian J M, Schulte R L and Adler P N 1986)Metall. Trans. A17 635

    Google Scholar 

  • Peel C J, Evans B and McDarmaid D 1986Aluminium-lithium alloys III p 26

  • Quist W E, Narayanan G H and Wingert A L 1984Aluminium-lithium alloys II p 313

  • Rioja R A and Ludwiczak E A 1986Aluminium-lithium alloys III p 471

  • Sainfort P and Guyot P 1985Philos. Mag. A51 575

    Google Scholar 

  • Sainfort P and Guyot P 1986Aluminium-lithium alloys III p 420

  • Sakurai T, Kobayashi A, Hasegawa Y, Sakai A and Pickering H W 1986Scr. Metall. 20 1131

    Article  CAS  Google Scholar 

  • Sanders T H, Ludwiczak E A and Sawtell R R 1980Mater. Sci. Eng. 43 247

    Article  CAS  Google Scholar 

  • Sanders T H and Starke E A 1984Aluminum-lithium alloys II p 1

  • Sankaran K K and Grant N J 1981Aluminum-lithium alloys p 205

  • Schurman and Geissler I K 1980Giessereiforschung 32 163

    Google Scholar 

  • Sigli C and Sanchez J M 1986Acta Metall. 34 1021

    Article  CAS  Google Scholar 

  • Silcock J M, Heal T J and Hardy H K 1955–56J. Inst. Met. 84 23

    CAS  Google Scholar 

  • Silcock J M 1959–60J. Inst. Met. 88 357

    Google Scholar 

  • Silcock J M 1960–61J. Inst. Met. 89 203

    Google Scholar 

  • Spooner S, Williams D B and Sung C M 1986Aluminium-lithium alloys III p 329

  • Starke E A, Sanders T H and Palmer I G 1981J. Met. 33(8) 24

    CAS  Google Scholar 

  • Sung C M, Chan H M and Williams D B 1986Aluminium-lithium alloys III p 337

  • Suzuki H, Kanno M and Hayashi N 1982J. Jpn. Inst. Light Met. 32 88

    CAS  Google Scholar 

  • Turkdogan T 1980Phys. Chem. High Temp. Technology (New York, London: Academic Press)

    Google Scholar 

  • van Heimendahl M and Puppel D 1982Micron 13 1

    Google Scholar 

  • Vasudevan A K, Ludwiczak E A, Baumann S F, Doherty R D and Kersker M M 1985Mater. Sci. Eng. 72 125

    Article  Google Scholar 

  • Vasudevan A K and Doherty R D 1987Acta Metall. 35 1193

    Article  CAS  Google Scholar 

  • Wagner C 1961Z. Electrochem. 65 581

    CAS  Google Scholar 

  • Welpmann K, Peters M and Sanders T H 1984Aluminium 60 E641

  • Welpmann K, Peters M and Sanders T H 1986Aluminium-lithium alloys III p 524

  • Wert J A and Ward A B 1985Scr. Metall. 19 367

    Article  CAS  Google Scholar 

  • White J, Miller W S, Palmer I G, Davis R and Saini T S 1986Aluminium-lithium alloys III p 530

  • Williams D B and Edington J W 1974Philos. Mag. 30 1147

    Article  CAS  Google Scholar 

  • Williams D B and Edington J W 1975Met. Sci. J. 9 529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, G.J., Banerjee, D. & Ramachandran, T.R. Physical metallurgy of aluminum-lithium alloys. Bull. Mater. Sci. 12, 325–340 (1989). https://doi.org/10.1007/BF02747140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747140

Keywords

Navigation