Skip to main content
Log in

Quantitative contribution of T1 phase to the strength of Al-Cu-Li alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum–lithium alloys are widely used in aerospace due to their excellent comprehensive mechanical properties. The key to accelerate the composition design of aluminum–lithium alloys is to generate accurate precipitate structure models at the atomistic scale and quantify the effects of the secondary phase on the properties of the alloy. In this article, the development process of high-strength composition design of aluminum–lithium alloys is reviewed. The T1 phase is considered to provide the highest strength in Al-Cu-Li alloys, and we further discuss the characteristics of the crystal structure, orientation relationship and morphology of the main strengthening phase. Additionally, this paper highlights the atomic structure model, microstructure parameters of T1 phase and the precipitate–dislocation interaction relationships. Practically, the widely accepted atomic model of T1 phase characterized with a corrugated Al-Li layer at the interface remains controversial. Moreover, the strengthening mechanism of Al-Li alloy is discussed. Based on the shearing and bypassing interaction mechanism between the T1 precipitates and the matrix dislocations, some quantitative contribution models to the strength of Al-Cu-Li alloys are concluded. These models can effectively predict the variation of yield strength of Al-Cu-Li alloy, but the transition of T1 phase from shearing mechanism to bypassing mechanism is not considered. However, the T1 diameter threshold that activated this transition has not been completely determined, which need to be further studied by obtaining a wider range of T1 microstructures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

(Reproduced with permission of the International Union of Crystallography, https://doi.org/10.1107/S0021889812039891)

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chen J, Madi Y, Morgeneyer TF, Besson J (2011) Plastic flow and ductile rupture of a 2198 Al–Cu–Li aluminum alloy. Comput Mater Sci 50(4):1365–1371. https://doi.org/10.1016/j.commatsci.2010.06.029

    Article  CAS  Google Scholar 

  2. Lv K, Zhu C, Zheng J, Wang X, Chen B (2019) Precipitation of T1 phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. J Mater Res 34(20):3535–3544. https://doi.org/10.1557/jmr.2019.136

    Article  CAS  Google Scholar 

  3. Chen A, Wu G, Zhang L, Zhang X, Shi C, Li Y (2016) Microstructural characteristics and mechanical properties of cast Al-3Li-xCu-0.2Zr alloy. Mater Sci Eng, A 677:29–40. https://doi.org/10.1016/j.msea.2016.09.040

    Article  CAS  Google Scholar 

  4. Chen A, Peng Y, Zhang L, Wu G, Li Y (2016) Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment. Mater Charact 114:234–242. https://doi.org/10.1016/j.matchar.2016.03.007

    Article  CAS  Google Scholar 

  5. Rioja RJ, Liu J (2012) The evolution of Al-Li Base products for aerospace and space applications. Metall and Mater Trans A 43(9):3325–3337. https://doi.org/10.1007/s11661-012-1155-z

    Article  CAS  Google Scholar 

  6. Harsha S, Dasharath SM (2021) Investigation on mechanical properties of aluminium lithium alloy through rolling. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.1019

  7. Ahmed B, Wu SJ (2013) Aluminum lithium alloys (Al-Li-Cu-X)-new generation material for aerospace applications. Appl Mech Mater 440:104–111. https://doi.org/10.4028/www.scientific.net/AMM.440.104

    Article  CAS  Google Scholar 

  8. Mishra RS, Sidhar H (2017) Physical Metallurgy of 2XXX Aluminum Alloys. In: Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys. 15–36. doi:https://doi.org/10.1016/b978-0-12-805368-3.00002-9

  9. Vasudévan AK, Bretz PE, Miller AC, Suresh S (1984) Fatigue crack growth behavior of aluminum alloy 2020 (Al-Cu-Li-Mn-Cd). Mater Sci Eng 64(1):113–122. https://doi.org/10.1016/0025-5416(84)90078-8

    Article  Google Scholar 

  10. Reis-Dennis S (2020) Review of Rethinking Health Care Ethics by Stephen Scher and Kasia Kozlowska: Palgrave Macmillan, available open access: https://link.springer.com/content/pdf/https://doi.org/10.1007/978-981-13-0830-7.pdf. Monash Bioeth Rev 38 (1):83–86. doi:https://doi.org/10.1007/s40592-020-00107-z

  11. Starke EA, Lin FS (1982) The influence of grain structure on the ductility of the al- cu- li- mn- cd alloy 2020. Metall Trans A 13(12):2259–2269. https://doi.org/10.1007/bf02648396

    Article  CAS  Google Scholar 

  12. Jata KV, Hopkins AK, Rioja RJ (1996) The anisotropy and texture of Al-Li alloys. Mater Sci Forum 217–222:647–652. https://doi.org/10.4028/www.scientific.net/msf.217-222.647

    Article  Google Scholar 

  13. Starke EA, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32(2–3):131–172. https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  14. Rioja RJ (1998) Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications. Mater Sci Eng, A 257(1):100–107. https://doi.org/10.1016/s0921-5093(98)00827-2

    Article  Google Scholar 

  15. Harsha S, Dasharath SM (2021) Effect of cryogenic heat treatment & ageing on ultra fine grained aluminium–lithium alloy-A review. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.10.1009

  16. Lin DC, Wang GX, Srivatsan TS (2003) A mechanism for the formation of equiaxed grains in welds of aluminum–lithium alloy 2090. Mater Sci Eng, A 351(1–2):304–309. https://doi.org/10.1016/s0921-5093(02)00858-4

    Article  Google Scholar 

  17. Liu D, Yürekli B, Ullsperger T, Matthäus G, Schade L, Nolte S, Rettenmayr M (2021) Microstructural aspects of additive manufacturing of Al Li alloys with high Li content. Mater Des. https://doi.org/10.1016/j.matdes.2020.109323

    Article  Google Scholar 

  18. Ning H, Li J-f, Ma P-c, Chen Y-l, Zhang X-h, Zhang K, Zhang R-f (2020) Evolution of aging precipitates in an Al–Li alloy with 1.5 wt% Li concentration. Vacuum 182. doi:https://doi.org/10.1016/j.vacuum.2020.109677

  19. Polmear IJ, Chester RJ (1989) Abnormal age hardening in an Al-Cu-Mg alloy containing silver and lithium. Scr Metall 23(7):1213–1217. https://doi.org/10.1016/0036-9748(89)90329-3

    Article  CAS  Google Scholar 

  20. Wang S, Zhang C, Li X, Huang H, Wang J (2020) First-principle investigation on the interfacial structure evolution of the δ’/θ’/δ’ composite precipitates in Al-Cu-Li alloys. J Mater Sci Technol 58:205–214. https://doi.org/10.1016/j.jmst.2020.03.065

    Article  Google Scholar 

  21. Deng Y, Bai J, Wu X, Huang G, Cao L, Huang L (2017) Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy. J Alloy Compd 723:661–666. https://doi.org/10.1016/j.jallcom.2017.06.198

    Article  CAS  Google Scholar 

  22. Entringer J, Reimann M, Norman A, dos Santos JF (2019) Influence of Cu/Li ratio on the microstructure evolution of bobbin-tool friction stir welded Al–Cu–Li alloys. J Market Res 8(2):2031–2040. https://doi.org/10.1016/j.jmrt.2019.01.014

    Article  CAS  Google Scholar 

  23. Decreus B, Deschamps A, De Geuser F, Donnadieu P, Sigli C, Weyland M (2013) The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater 61(6):2207–2218. https://doi.org/10.1016/j.actamat.2012.12.041

    Article  CAS  Google Scholar 

  24. Jata KV, Starke EA (1988) Fracture toughness of AlLiX alloys at ambient and cryogenic temperatures. Scr Metall 22(9):1553–1556. https://doi.org/10.1016/s0036-9748(88)80037-1

    Article  CAS  Google Scholar 

  25. Prasad NE, Kamat SV, Prasad KS, Malakondaiah G, Kutumbarao VV (1993) In-plane anisotropy in the fracture toughness of an Al-Li 8090 alloy plate. Eng Fract Mech 46(2):209–223. https://doi.org/10.1016/0013-7944(93)90282-w

    Article  Google Scholar 

  26. Sugamata M, Blankenship CP, Starke EA (1993) Predicting plane strain fracture toughness of Al-Li-Cu-Mg alloys. Mater Sci Eng, A 163(1):1–10. https://doi.org/10.1016/0921-5093(93)90572-v

    Article  Google Scholar 

  27. Zhang J, Wu G, Zhang L, Zhang X, Shi C, Sun J (2020) Effect of Zn on precipitation evolution and mechanical properties of a high strength cast Al-Li-Cu alloy. Mater Charact. https://doi.org/10.1016/j.matchar.2019.110089

    Article  Google Scholar 

  28. Gumbmann E, De Geuser F, Sigli C, Deschamps A (2017) Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Mater 133:172–185. https://doi.org/10.1016/j.actamat.2017.05.029

    Article  CAS  Google Scholar 

  29. Chen A, Zhang L, Wu G, Sun M, Liu W (2017) Influences of Mn content on the microstructures and mechanical properties of cast Al-3Li-2Cu-0.2Zr alloy. J Alloy Compd 715:421–431. https://doi.org/10.1016/j.jallcom.2017.05.030

    Article  CAS  Google Scholar 

  30. Liu D-y, Ma Y-l, Li J-f, Huang C, Wang Y, Wang Z-x, Zhang R-f (2020) The influence of Zn addition on microstructure of an Al-1.7 Cu-4.0 Li-0.4 Mg alloy. J Mater Res Technol 9 (2):2423–2439. https://doi.org/10.1016/j.jmrt.2019.12.074

  31. Jiang B, Wang H, Yi D, Tian Y, Shen F, Wang B, Liu H, Hu Z (2020) Effect of Ag addition on the age hardening and precipitation behavior in an Al-Cu-Li-Mg-Zn-Mn-Zr alloy. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110184

    Article  Google Scholar 

  32. Peng Y-h, Liu C-y, Wei L-l, Jiang H-j, Ge Z-j (2021) Quench sensitivity and microstructures of high-Zn-content Al−Zn−Mg−Cu alloys with different Cu contents and Sc addition. Transac Nonferrous Metals Soc China 31(1):24–35. https://doi.org/10.1016/s1003-6326(20)65476-0

    Article  CAS  Google Scholar 

  33. Jambor M, Nový F, Bokůvka O, Trško L (2019) The natural aging behavior of the AA 2055 Al-Cu-Li alloy. Transport Res Procedia 40:42–45. https://doi.org/10.1016/j.trpro.2019.07.008

    Article  Google Scholar 

  34. Liu D-y, Wang J-x, Li J-f, Ma Y-l, Zhang K, Zhang R-f (2020) The effect of Ag element on the microstructure characteristic evolution of an Al–Cu–Li–Mg alloy. J Market Res 9(5):11121–11134. https://doi.org/10.1016/j.jmrt.2020.08.021

    Article  CAS  Google Scholar 

  35. Zhu AW, Gable BM, Shiflet GJ, Starke EA Jr (2002) The intelligent design of high strength, creep-resistant aluminum alloys. Mater Sci Forum 396–402:21–30. https://doi.org/10.4028/www.scientific.net/MSF.396-402.21

    Article  Google Scholar 

  36. Liu D-y, Ma Y-l, Li J-f, Zhang R-f, Iwaoka H, Hirosawa S (2020) Precipitate microstructures, mechanical properties and corrosion resistance of Al-1.0 wt%Cu-2.5 wt%Li alloys with different micro-alloyed elements addition. Mater Characterization. https://doi.org/10.1016/j.matchar.2020.110528

    Article  Google Scholar 

  37. Li S-s, Li L, Han J, Wang C-t, Xiao Y-q, Jian X-d, Qian P, Su Y-j (2020) First-Principles study on the nucleation of precipitates in ternary Al alloys doped with Sc, Li, Zr, and Ti elements. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.146455

    Article  Google Scholar 

  38. Wu L, Li X, Wang H (2021) The effect of major constituents on microstructure and mechanical properties of cast Al-Li-Cu-Zr alloy. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110800

    Article  Google Scholar 

  39. Li J-f, Liu P-l, Chen Y-l, Zhang X-h, Zheng Z-q (2015) Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8)Cu–(1.0–1.4)Li alloys. Transac Nonferrous Metals Soc China 25(7):2103–2112. https://doi.org/10.1016/s1003-6326(15)63821-3

    Article  CAS  Google Scholar 

  40. Decreus B, de Geuser F, Deschamps A, Donnadieu P, Sigli C (2011) Precipitation sequences in Two Al-Li-Cu Alloys. Solid State Phenom 172–174:267–272. https://doi.org/10.4028/www.scientific.net/SSP.172-174.267

    Article  CAS  Google Scholar 

  41. Ma Y-l, Li J-f, Zhang R-z, Tang J-g, Huang C, Li H-y, Zheng Z-q (2020) Strength and structure variation of 2195 Al-Li alloy caused by different deformation processes of hot extrusion and cold-rolling. Transac Nonferrous Metals Soc China 30(4):835–849. https://doi.org/10.1016/s1003-6326(20)65258-x

    Article  CAS  Google Scholar 

  42. Qin S, Lee S, Tsuchiya T, Matsuda K, Horita Z, Kocisko R, Kvackaj T (2020) Aging behavior of Al-Li-(Cu, Mg) alloys processed by different deformation methods. Mater Des. https://doi.org/10.1016/j.matdes.2020.109139

    Article  Google Scholar 

  43. Prasad KS, Prasad NE, Gokhale AA (2014) Microstructure and Precipitate Characteristics of Aluminum–Lithium Alloys. In: Aluminum-lithium Alloys. https://doi.org/10.1016/b978-0-12-401698-9.00004-5

  44. El-Aty AA, Xu Y, Zhang S, Ma Y, Chen D (2017) Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al-Li alloys sheet undergoing different strain rates and fibre orientation: a comparative study. Procedia Eng 207:13–18. https://doi.org/10.1016/j.proeng.2017.10.730

    Article  CAS  Google Scholar 

  45. Abd El-Aty A, Xu Y, Guo X, Zhang SH, Ma Y, Chen D (2018) Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review. J Adv Res 10:49–67. https://doi.org/10.1016/j.jare.2017.12.004

    Article  CAS  Google Scholar 

  46. Dwyer C, Weyland M, Chang LY, Muddle BC (2011) Combined electron beam imaging and ab initio modeling of T1 precipitates in Al–Li–Cu alloys. Appl Phys Lett. https://doi.org/10.1063/13590171

    Article  Google Scholar 

  47. Yoshimura R, Konno TJ, Abe E, Hiraga K (2003) Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases. Acta Mater 51(14):4251–4266. https://doi.org/10.1016/s1359-6454(03)00253-2

    Article  CAS  Google Scholar 

  48. Zhu AW, Csontos A, Starke EA (1999) Computer experiment on superposition of strengthening effects of different particles. Acta Mater 47(6):1713–1721. https://doi.org/10.1016/s1359-6454(99)00077-4

    Article  CAS  Google Scholar 

  49. Dorin T, De Geuser F, Lefebvre W, Sigli C, Deschamps A (2014) Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy. Mater Sci Eng, A 605:119–126. https://doi.org/10.1016/j.msea.2014.03.024

    Article  CAS  Google Scholar 

  50. Wang X-Y, Jiang J-T, Li G-A, Wang X-M, Sun J, Zhen L (2020) Effects of coarse Al2CuLi phase on the hot deformation behavior of Al–Li alloy. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152469

    Article  Google Scholar 

  51. Mishra S, Suresh M, More AM, Bisht A, Nayan N, Suwas S (2021) Texture control to reduce yield strength anisotropy in the third generation aluminum-copper-lithium alloy: experiments and modeling. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.140047

    Article  Google Scholar 

  52. Zhang P, Chen M (2020) Progress in characterization methods for thermoplastic deforming constitutive models of Al–Li alloys: a review. J Mater Sci 55(23):9828–9847. https://doi.org/10.1007/s10853-020-04682-8

    Article  CAS  Google Scholar 

  53. Wu L, Wang Q, Shu S, Li Y, Li X, Wang H (2021) Interactions between cadmium and Al3Li precipitates: a new mechanism of accelerating dissolution and transformation of phases in Al–Li–Cu alloy. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2020.140607

    Article  Google Scholar 

  54. Williams DB, Edington JW (2013) The Precipitation of δ′ (Al3Li) in dilute aluminium-lithium alloys. Metal Sci 9(1):529–532. https://doi.org/10.1179/030634575790445143

    Article  Google Scholar 

  55. Noble B, Thompson GE (2013) Precipitation characteristics of aluminium-lithium alloys. Metal Sci J 5(1):114–120. https://doi.org/10.1179/030634571790439333

    Article  Google Scholar 

  56. Chen S-W, Chang YA (2011) Phase equilibria and solidification of Al-Rich Ai-Ui-Cu alloys. MRS Proc. https://doi.org/10.1557/proc-186-141

    Article  Google Scholar 

  57. Guo C, Liang Y, Li C, Du Z (2011) Thermodynamic description of the Al–Li–Zn system. Calphad 35(1):54–65. https://doi.org/10.1016/j.calphad.2010.11.006

    Article  CAS  Google Scholar 

  58. Okamoto H (2012) Al-Li (Aluminum-Lithium). J Phase Equilib Diffus 33(6):500–501. https://doi.org/10.1007/s11669-012-0119-8

    Article  CAS  Google Scholar 

  59. Prasad KS, Mukhopadhyay AK, Gokhale AA, Banerjee D, Goel DB (1994) δ Precipitation in an Al-Li-Cu-Mg-Zr alloy. Scr Metall Mater 30(10):1299–1304. https://doi.org/10.1016/0956-716x(94)90262-3

    Article  CAS  Google Scholar 

  60. Khachaturyan AG, Lindsey TF, Morris JW (1988) Theoretical investigation of the precipitation of δ’ in Al-Li. Metall Trans A 19(2):249–258. https://doi.org/10.1007/bf02652533

    Article  Google Scholar 

  61. Baumann SF, Williams DB (1985) Experimental observations on the nucleation and growth of δ′ (Al3Li) in dilute Al-Li alloys. Metall Trans A 16(7):1203–1211. https://doi.org/10.1007/bf02670325

    Article  Google Scholar 

  62. Noble B, Bray SE (1998) On the α(Al)/δ′(Al3Li) metastable solvus in aluminium–lithium alloys. Acta Mater 46(17):6163–6171. https://doi.org/10.1016/s1359-6454(98)00263-8

    Article  CAS  Google Scholar 

  63. Flower HM, Gregson PJ (2013) Solid state phase transformations in aluminium alloys containing lithium. Mater Sci Technol 3(2):81–90. https://doi.org/10.1179/mst.1987.3.2.81

    Article  Google Scholar 

  64. Poduri R, Chen LQ (1998) Computer simulation of morphological evolution and coarsening kinetics of δ′ (Al3Li) precipitates in Al–Li alloys. Acta Mater 46(11):3915–3928. https://doi.org/10.1016/s1359-6454(98)00058-5

    Article  CAS  Google Scholar 

  65. Jha SC, Sanders TH, Dayananda MA (1987) Grain boundary precipitate free zones in Al-Li alloys. Acta Metall 35(2):473–482. https://doi.org/10.1016/0001-6160(87)90253-7

    Article  CAS  Google Scholar 

  66. Sigli C, Sanchez JM (1986) Calculation of phase equilibrium in Al-Li alloys. Acta Metall 34(6):1021–1028. https://doi.org/10.1016/0001-6160(86)90211-7

    Article  CAS  Google Scholar 

  67. Balmuth ES (1984) Particle size determination in an Al-3Li alloy using DSC. Scr Metall 18(4):301–304. https://doi.org/10.1016/0036-9748(84)90440-x

    Article  CAS  Google Scholar 

  68. Okuda H, Osamura K (1994) Computer simulation of the kinetics of phase decomposition with the L12 type ordering in an ising lattice system at low temperature. Acta Metall Mater 42(4):1337–1343. https://doi.org/10.1016/0956-7151(94)90150-3

    Article  CAS  Google Scholar 

  69. Radmilovic V, Fox AG, Thomas G (1989) Spinodal decomposition of Al-rich Al-Li alloys. Acta Metall 37(9):2385–2394. https://doi.org/10.1016/0001-6160(89)90036-9

    Article  CAS  Google Scholar 

  70. Floriano MA, Triolo A, Caponetti E, Triolo R (1996) On the nature of phase separation in a commercial aluminium-lithium alloy. J Mol Struct 383(1–3):277–282. https://doi.org/10.1016/s0022-2860(96)09299-x

    Article  CAS  Google Scholar 

  71. Spowage AC, Bray S (2010) Characterization of nanoprecipitation mechanisms during isochronal aging of a pseudo-binary Al-8.7 at. pct Li alloy. Metall Mater Transac A 42(1):227–230. https://doi.org/10.1007/s11661-010-0498-6

    Article  CAS  Google Scholar 

  72. Wang SC, Starink MJ (2013) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50(4):193–215. https://doi.org/10.1179/174328005x14357

    Article  Google Scholar 

  73. Liu H, Bellón B, Llorca J (2017) Multiscale modelling of the morphology and spatial distribution of θ′ precipitates in Al-Cu alloys. Acta Mater 132:611–626. https://doi.org/10.1016/j.actamat.2017.04.042

    Article  CAS  Google Scholar 

  74. Yoshimura R, Konno TJ, Abe E, Hiraga K (2003) Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater 51(10):2891–2903. https://doi.org/10.1016/s1359-6454(03)00104-6

    Article  CAS  Google Scholar 

  75. Gao Z, Liu JZ, Chen JH, Duan SY, Liu ZR, Ming WQ, Wu CL (2015) Formation mechanism of precipitate T1 in AlCuLi alloys. J Alloy Compd 624:22–26. https://doi.org/10.1016/j.jallcom.2014.10.208

    Article  CAS  Google Scholar 

  76. Prasad NE, Gokhale AA, Rao PR (2003) Mechanical behaviour of aluminium-lithium alloys. Sadhana 28(1–2):209–246. https://doi.org/10.1007/bf02717134

    Article  Google Scholar 

  77. Tsivoulas D, Prangnell PB (2014) The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet. Acta Mater 77:1–16. https://doi.org/10.1016/j.actamat.2014.05.028

    Article  CAS  Google Scholar 

  78. Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86. https://doi.org/10.1016/j.actamat.2015.03.057

    Article  CAS  Google Scholar 

  79. Kumar KS, Brown SA, Pickens JR (1990) Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy. Scr Metall Mater 24(7):1245–1250. https://doi.org/10.1016/0956-716x(90)90336-f

    Article  CAS  Google Scholar 

  80. Noble B, Thompson GE (2013) T1(Al2CuLi) precipitation in aluminium–copper–lithium alloys. Metal Sci J 6(1):167–174. https://doi.org/10.1179/030634572790445975

    Article  Google Scholar 

  81. Huang JC, Ardell AJ (2013) Crystal structure and stability ofT1, precipitates in aged Al–Li–Cu alloys. Mater Sci Technol 3(3):176–188. https://doi.org/10.1179/mst.1987.3.3.176

    Article  Google Scholar 

  82. Herring RA, Gayle FW, Pickens JR (1993) High-resolution electron microscopy study of a high-copper variant of weldalite 049 and a high-strength AI-Cu-Ag-Mg-Zr alloy. J Mater Sci 28(1):69–73. https://doi.org/10.1007/bf00349035

    Article  CAS  Google Scholar 

  83. Radmilovic V, Thomas G (1987) ATOMIC RESOLUTION IMAGING IN Al-Li-Cu ALLOY. Le Journal de Physique Colloques. https://doi.org/10.1051/jphyscol:1987344

    Article  Google Scholar 

  84. Cassada WA, Shiflet GJ, Starke EA (1991) Mechanism of Al2CuLi (T 1) nucleation and growth. Metall Trans A 22(2):287–297. https://doi.org/10.1007/bf02656798

    Article  Google Scholar 

  85. Howe JM, Lee J, Vasudévan AK (1988) Structure and deformation behavior ofT 1 precipitate plates in an Al- 2Li- 1 Cu alloy. Metall Trans A 19(12):2911–2920. https://doi.org/10.1007/bf02647717

    Article  Google Scholar 

  86. Van Smaalen S, Meetsma A, De Boer JL, Bronsveld PM (1990) Refinement of the crystal structure of hexagonal Al2CuLi. J Solid State Chem 85(2):293–298. https://doi.org/10.1016/s0022-4596(05)80086-6

    Article  Google Scholar 

  87. Donnadieu P, Shao Y, De Geuser F, Botton GA, Lazar S, Cheynet M, de Boissieu M, Deschamps A (2011) Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater 59(2):462–472. https://doi.org/10.1016/j.actamat.2010.09.044

    Article  CAS  Google Scholar 

  88. Itoh G, Cui Q, Kanno M (1996) Effects of a small addition of magnesium and silver on the precipitation of T1 phase in an Al-4%Cu-1.1%Li-0.2%Zr alloy. Mater Sci Eng. https://doi.org/10.1016/0921-5093(95)10157-8

    Article  Google Scholar 

  89. Zhang J, Wang C, Zhang Y, Deng Y (2018) Effects of creep aging upon Al-Cu-Li alloy: Strength, toughness and microstructure. J Alloy Compd 764:452–459. https://doi.org/10.1016/j.jallcom.2018.06.103

    Article  CAS  Google Scholar 

  90. Starink MJ, Hobson AJ, Sinclair I, Gregson PJ (2000) Embrittlement of Al–Li–Cu–Mg alloys at slightly elevated temperatures: microstructural mechanisms of hardening. Mater Sci Eng, A 289(1–2):130–142. https://doi.org/10.1016/s0921-5093(00)00912-6

    Article  Google Scholar 

  91. Rodgers BI, Prangnell PB (2016) Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195. Acta Mater 108:55–67. https://doi.org/10.1016/j.actamat.2016.02.017

    Article  CAS  Google Scholar 

  92. De Geuser F, Bley F, Deschamps A (2012) A new method for evaluating the size of plate-like precipitates by small-angle scattering. J Appl Crystallogr 45(6):1208–1218. https://doi.org/10.1107/s0021889812039891

    Article  Google Scholar 

  93. Dorin T, Deschamps A, De Geuser F, Lefebvre W, Sigli C (2014) Quantitative description of the T1formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy. Phil Mag 94(10):1012–1030. https://doi.org/10.1080/14786435.2013.878047

    Article  CAS  Google Scholar 

  94. Dorin T, Donnadieu P, Chaix J-M, Lefebvre W, Geuser FD, Deschamps A (2015) Size distribution and volume fraction of T1 phase precipitates from TEM images: direct measurements and related correction. Micron 78:19–27. https://doi.org/10.1016/j.micron.2015.06.002

    Article  CAS  Google Scholar 

  95. Kang SJ, Kim T-H, Yang C-W, Lee JI, Park ES, Noh TW, Kim M (2015) Atomic structure and growth mechanism of T1 precipitate in Al–Cu–Li–Mg–Ag alloy. Scripta Mater 109:68–71. https://doi.org/10.1016/j.scriptamat.2015.07.020

    Article  CAS  Google Scholar 

  96. Dorin T, Deschamps A, Geuser FD, Sigli C (2014) Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy. Acta Mater 75:134–146. https://doi.org/10.1016/j.actamat.2014.04.046

    Article  CAS  Google Scholar 

  97. Deschamps A, Garcia M, Chevy J, Davo B, De Geuser F (2017) Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing. Acta Mater 122:32–46. https://doi.org/10.1016/j.actamat.2016.09.036

    Article  CAS  Google Scholar 

  98. Wang X-M, Li G-A, Jiang J-T, Shao W-Z, Zhen L (2019) Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys. Mater Sci Eng, A 742:138–149. https://doi.org/10.1016/j.msea.2018.11.015

    Article  CAS  Google Scholar 

  99. Gumbmann E, Lefebvre W, De Geuser F, Sigli C, Deschamps A (2016) The effect of minor solute additions on the precipitation path of an Al Cu Li alloy. Acta Mater 115:104–114. https://doi.org/10.1016/j.actamat.2016.05.050

    Article  CAS  Google Scholar 

  100. Gumbmann E, De Geuser F, Deschamps A, Lefebvre W, Robaut F, Sigli C (2016) A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al–Cu–Li alloy. Scripta Mater 110:44–47. https://doi.org/10.1016/j.scriptamat.2015.07.042

    Article  CAS  Google Scholar 

  101. Wang X-M, Shao W-Z, Jiang J-T, Li G-A, Wang X-Y, Zhen L (2020) Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al–Cu–Li–Mg–Ag alloy. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2020.139253

    Article  Google Scholar 

  102. Kumar KS, Brown SA, Pickens JR (1996) Microstructural evolution during aging of an AlCuLiAgMgZr alloy. Acta Mater 44(5):1899–1915. https://doi.org/10.1016/1359-6454(95)00319-3

    Article  CAS  Google Scholar 

  103. Li J-f, Huang J-l, Liu D-y, Chen Y-l, Zhang X-h, Ma P-c (2019) Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration. Transac Nonferrous Metals Soc China 29(1):15–24. https://doi.org/10.1016/s1003-6326(18)64910-6

    Article  CAS  Google Scholar 

  104. Zhu AW, Starke EA Jr (2000) A finite element analysis of strengthening effects of plate-like particles in a metal matrix. Mater Sci Forum 331–337:1279–1284. https://doi.org/10.4028/www.scientific.net/MSF.331-337.1279

    Article  Google Scholar 

  105. Tsao CS, Chen CY, Huang JY (2004) Coarsening kinetics, thermodynamic properties, and interfacial characteristics of δ′precipitates in Al−Lialloys taking into account the Gibbs-Thomson effect. Phys Rev. https://doi.org/10.1103/PhysRevB.70.174104

    Article  Google Scholar 

  106. Noble B, Harris SJ, Dinsdale K (1982) The elastic modulus of aluminium-lithium alloys. J Mater Sci 17(2):461–468. https://doi.org/10.1007/bf00591481

    Article  CAS  Google Scholar 

  107. Srivatsan TS, Lavernia EJ, Eswara Prasad N, Kutumbarao VV (2014) Quasi-static strength, deformation, and fracture behavior of aluminum–lithium alloys in aluminum-lithium alloys. https://doi.org/10.1016/b978-0-12-401698-9.00010-0

  108. Vasudévan AK, Doherty RD (1987) Grain boundary ductile fracture in precipitation hardened aluminum alloys. Acta Metall 35(6):1193–1219. https://doi.org/10.1016/0001-6160(87)90001-0

    Article  Google Scholar 

  109. Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced Al-1.2wt.%Cu-1wt.%Mg-χLi alloys. Mater Sci Eng A. https://doi.org/10.1016/0921-5093(95)10159-4

    Article  Google Scholar 

  110. Sanders TH, Starke EA (1982) The effect of slip distribution on the monotonic and cyclic ductility of Al-Li binary alloys. Acta Metall 30(5):927–939. https://doi.org/10.1016/0001-6160(82)90199-7

    Article  CAS  Google Scholar 

  111. Srivatsan T, Coynejr E (1986) Cyclic stress response and deformation behaviour of precipitation-hardened aluminium-lithium alloys. Int J Fatigue 8(4):201–208. https://doi.org/10.1016/0142-1123(86)90022-8

    Article  CAS  Google Scholar 

  112. Sainfort P, Guyot P (1985) Dislocation-precipitate interactions in Al-Li binary and Al-Li-Cu ternary alloys. Strength of Metals Alloys. https://doi.org/10.1016/B978-0-08-031642-0.50080-5

    Article  Google Scholar 

  113. Wang F, Bhattacharyya JJ, Agnew SR (2016) Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys. Mater Sci Eng, A 666:114–122. https://doi.org/10.1016/j.msea.2016.04.056

    Article  CAS  Google Scholar 

  114. Yang Q-b, Deng Y-j, Yang M, Zhang Z-q, Li W-g, Liu Q (2020) Effect of Al3Zr particles on hot-compression behavior and processing map for Al-Cu-Li based alloys at elevated temperatures. Transac Nonferrous Metals Soc China 30(4):872–882. https://doi.org/10.1016/s1003-6326(20)65261-x

    Article  CAS  Google Scholar 

  115. Huang JC, Ardell AJ (1987) Strengthening mechanisms associated with t1 particles in two Al-Li-Cu alloys. Le Journal de Physique Colloques. https://doi.org/10.1051/jphyscol:1987343

    Article  Google Scholar 

  116. Nie JF, Muddle BC, Polmear IJ (1996) The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. Mater Sci Forum 217–222:1257–1262

    Google Scholar 

  117. Zhu AW, Starke EA (1999) Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Mater 47(11):3263–3269. https://doi.org/10.1016/s1359-6454(99)00179-2

    Article  CAS  Google Scholar 

  118. da Costa TJ, Cram DG, Bourgeois L, Bastow TJ, Hill AJ, Hutchinson CR (2008) On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates. Acta Mater 56(20):6109–6122. https://doi.org/10.1016/j.actamat.2008.08.023

    Article  CAS  Google Scholar 

  119. Gable BM, Zhu AW, Csontos AA, Starke EA (2001) The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy. J Light Met 1(1):1–14. https://doi.org/10.1016/s1471-5317(00)00002-x

    Article  Google Scholar 

  120. Cassada WA, Shiflet GJ, Starke EA (1991) The effect of plastic deformation on Al2CuLi (T 1) precipitation. Metall Trans A 22(2):299–306. https://doi.org/10.1007/bf02656799

    Article  Google Scholar 

  121. Deschamps A, Decreus B, De Geuser F, Dorin T, Weyland M (2013) The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater 61(11):4010–4021. https://doi.org/10.1016/j.actamat.2013.03.015

    Article  CAS  Google Scholar 

  122. Nie JF, Muddle BC (1998) Microstructural design of high-strength aluminum alloys. J Phase Equilibria 19(6):543–551. https://doi.org/10.1361/105497198770341734

    Article  CAS  Google Scholar 

  123. Ardell AJ (1985) Precipitation hardening. Metall Trans A 16(12):2131–2165. https://doi.org/10.1007/bf02670416

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoai He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table

Table 4 Legend for definition of terms and symbols

4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., He, G., Liu, Y. et al. Quantitative contribution of T1 phase to the strength of Al-Cu-Li alloys. J Mater Sci 56, 18368–18390 (2021). https://doi.org/10.1007/s10853-021-06432-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06432-w

Navigation