Skip to main content
Log in

Electronic properties of the III–VI layer compounds GaS, GaSe and InSe. I: Band structure

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The electronic properties of the semiconducting layer compounds GaS, GaSe and InSe are considered comparatively in a series of papers. In this first paper the band structures of the three compounds are computed by using the same method and the same approximations for all of them. The overlap-reduced semi-empirical tight-binding method (ORSTB) is outlined by first. The method consists in scaling only the overlap integrals in the secular equation. In this way it takes into account the localization of the atomiclike functions used in the Bloch sums in a more effective and simpler way than previous tight-binding semiempirical schemes. For GaS, GaSe and InSe bands only two scaling factors are used as matching parameters to reproduce optical and photoemission experimental bands is very good. In particular, the shape of the bonding metal-metal bands which all previous tight-binding calculations failed to reproduce is correctly obtained here. For all the three compounds the top of the valence bands falls at the point Γ and the bottom of the conduction bands is atM. The indirect gap is slightly lower than the direct one in GaSe and InSe, while it is larger in GaS, in agreement with the experiment. The remarkably similar overall shape of the bands, for all the compounds, stems from the similar magnitude of the two-centre integrals. The atomic eigenvalues and the crystal fields are responsible for the main differences in the widths of groups of bands in the three cases. The density of states is computed on the basis of the obtained bands, by using the tetrahedral linear approximation by Lehmann and Taut.

Riassunto

Si presenta il primo di una serie di lavori sulle proprietà elettroniche dei semiconduttori lamellari GaS, GaSe ed InSe. Si calcolano le strutture a bande di questi tre composti usando il medesimo metodo e le medesime approssimazioni. Si illustra il metodo «a legame stretto semiempirico a sovrapposizione ridotta» (ORSTB), che è basato su una riduzione solo degli integrali di sovrapposizione nell'equazione secolare. In tale modo si tiene conto della localizzazione delle funzioni di tipo atomico usate nelle somme di Bloch in modo efficace e più semplice di quanto fatto in precedenti schemi di calcolo semiempirici nell'approssimazione di legame stretto. Per calcolare le bande del GaS, GaSe ed InSe si sono usati solo due fattori di scala come parametri per riprodurre i dati sperimentali ottici e di fotoemissione. L'accordo tra le bande sperimentali e quelle calcolate è molto buono. In particolare, è riprodotta correttamente la forma delle bande leganti metallo-metallo, al contrario di tutti i calcoli fatti precedentemente nell'approssimazione di legame stretto. In tutti e tre i composti il massimo delle bande di valenza si trova al punto Γ ed il minimo di quelle di conduzione si trova adM. Il gap indiretto è di poco inferiore a quello diretto nel GaSe e nell'InSe, mentre lo è di più nel GaS, in accordo con l'esperienza. La somiglianza della forma delle bande dei tre composti deriva dal fatto che gli integrali a due centri nei tre composti sono di valore paragonabile. In tutti e tre i casi si è trovato che le principali differenze nella larghezza di gruppi di bande sono dovute alle differenze negli autovalori atomici e nei campi cristallini. Si calcola inoltre la densità degli stati sulla base delle bande ottenute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Segura, J. N. Besson, A. Chevy andM. S. Martin:Nuovo Cimento,38 B, 345 (1977).

    Article  ADS  Google Scholar 

  2. N. Romeo:Riv. Nuovo Cimento,3, 103 (1973).

    Article  Google Scholar 

  3. B. L. Evans:Physics and Chemistry of Materials with Layered Structures, Vol.4 (Dordrecht, 1977), and references quoted therein.

  4. M. Schlüter, J. Camassel, S. Kohn, J. P. Voitchovsky, Y. R. Shen andM. L. Chen:Phys. Rev. B,13, 3534 (1976).

    Article  ADS  Google Scholar 

  5. G. Ottaviani, C. Canali, F. Nava, Ph. Schmid, E. Mooser, R. Minder andI. Zschokke:Sol. State Comm.,14, 933 (1974).

    Article  ADS  Google Scholar 

  6. J. M. Thomas, I. Adams, R. H. Williams andM. Barber:Trans. Faraday Soc.,68, 755 (1972);I. Adams, J. M. Thomas, M. Barber andM. Williams:Chem. Phys. Lett.,10, 297 (1971).

    Article  Google Scholar 

  7. F. R. Shepherd andP. M. Williams:Phys. Rev. B,12, 5705 (1975).

    Article  ADS  Google Scholar 

  8. R. H. Williams, P. C. Kemeny andL. Ley:Sol. State Comm.,19, 495 (1976).

    Article  ADS  Google Scholar 

  9. G. Margaritondo, J. E. Rowe andS. B. Christman:Phys. Rev. B,15, 3844 (1977).

    Article  ADS  Google Scholar 

  10. A. Balzarotti, R. Girlanda, V. Grasso, E. Doni, F. Antonangeli andM. Piacentini:Can. Journ. Phys.,56, 700 (1978).

    Article  ADS  Google Scholar 

  11. F. Bassani andG. Pastori Parravicini:Nuovo Cimento,50 B, 95 (1967).

    Article  ADS  Google Scholar 

  12. M. Schlüter:Nuovo Cimento,13 B, 313 (1973).

    Article  ADS  Google Scholar 

  13. H. Kamimura andK. Nakao:Journ. Phys. Soc. Japan,24, 1313 (1968).

    Article  ADS  Google Scholar 

  14. J. V. McCanny andR. B. Murray:J. Phys. C,10, 1211 (1977).

    Article  ADS  Google Scholar 

  15. S. Nagel, A. Baldereschi andK. Maschke: to be published.

  16. A. Bourdon:J. Physique Suppl.,35, C 3–261 (1974).

    Google Scholar 

  17. Y. Depeursinge:Nuovo Cimento,38 B, 153 (1977).

    Article  ADS  Google Scholar 

  18. A. Balzarotti, R. Girlanda, V. Grasso, E. Doni, F. Antonangeli, M. Piacentini andA. Baldereschi:Sol. State Comm.,24, 327 (1977).

    Article  ADS  Google Scholar 

  19. Y. Depeursinge, E. Doni, R. Girlanda, A. Baldereschi andK. Maschke:Sol. State Comm.,27, 1449 (1978).

    Article  ADS  Google Scholar 

  20. A. Bourdon, A. Chevy andJ. Besson:XIV International Conference on the Physics of Semiconductors (Edinburgh, 1978).

  21. P. Thiry, Y. Petroff, R. Pinchaux, C. Guillot, Y. Ballu, J. Lecante, J. Paignè andF. Levy:Sol. State Comm.,22, 685 (1977).

    Article  ADS  Google Scholar 

  22. P. K. Larsen, G. Margaritondo, J. E. Rowe, M. Schlüter andN. V. Smith:Phys. Lett.,58 A, 423 (1976);I. T. McGovern, A. Parke andR. M. Williams: Daresbury Report (1977).

    Article  ADS  Google Scholar 

  23. K. Larsen, S. Chiang andN. V. Smith:Phys. Rev. B,15, 3200 (1977).

    Article  ADS  Google Scholar 

  24. T. L. Gilbert: inMolecular Orbitals in Chemistry Physics and Biology, edited byP. O. Löwdin andB. Pullman (New York, N. Y., 1964), p. 405.

  25. See ref. (11). An equivalent approach consists in contracting the free-atom wave functions to obtain the scaled overlap and interaction integrals. Such a method has been employed successfully in several compounds and recently applied byNagel et al. (ref. (15)S. Nagel, A. Baldereschi andK. Maschke: to be published.) to GaSe. These authors multiply the atomic wave functions with Gaussians and utilize the widths of them as free parameters.

    Article  ADS  Google Scholar 

  26. P. W. Anderson:Phys. Rev.,181, 25 (1969). See alsoD. W. Bullet:J. Phys. C,8, 2695 (1975).

    Article  ADS  Google Scholar 

  27. R. W. G. Wyckoff:Crystal Structure, Vol.1 (New York, N. Y., 1963).

  28. A. Kuhn, A. Chevy andR. Chevalier:Acta Crystallog.,32 B, 983 (1976).

    Article  Google Scholar 

  29. A. Kuhn, A. Chevy andR. Chevalier:Phys. Stat. Sol.,31 A, 469 (1975).

    Article  ADS  Google Scholar 

  30. A. Likforman, D. Carre, J. Etienne andB. Bachet:Acta Crystallog.,31 B, 1252 (1975).

    Article  Google Scholar 

  31. A. Baldereschi, K. Maschke andM. Schlüter:Helv. Phys. Acta 47, 434 (1974).

    Google Scholar 

  32. J. C. Slater andG. F. Koster:Phys. Rev.,94, 1498 (1954).

    Article  ADS  Google Scholar 

  33. E. Doni: to be published.

  34. F. Herman andS. Skillman:Atomic Structure Calculations (Englewood Cliffs, N. J., 1963).

  35. E. Clementi andD. L. Raimondi:Journ. Chem. Phys.,38, 2686 (1963);E. Clementi, D. L. Raimondi andW. P. Reinhardt:Journ. Chem. Phys.,47, 1300 (1967).

    Article  ADS  Google Scholar 

  36. J. C. Slater:Phys. Rev.,81, 385 (1951).

    Article  ADS  Google Scholar 

  37. J. E. Robinson, F. Bassani, S. R. Knox andJ. R. Schrieffer:Phys. Rev. Lett.,9, 521 (1962).

    Article  Google Scholar 

  38. E. Clementi andC. Roetti:At. Data and Nucl. Data Tables,14, 177 (1974).

    Article  ADS  Google Scholar 

  39. G. Lehmann andM. Taut:Phys. Stat. Sol.,54 b, 469 (1972).

    Article  ADS  Google Scholar 

  40. A. Balzarotti, R. Girlanda, V. Grasso, P. Perillo, E. Doni andM. Piacentini:Lett. Nuovo Cimento,21, 49 (1978).

    Article  Google Scholar 

  41. E. Aulich, J. L. Brebner andE. Mooser:Phys. Stat. Sol.,31, 129 (1969).

    Article  ADS  Google Scholar 

  42. J. L. Brebner andG. Fischer:Can. Journ. Phys.,41, 561 (1963).

    Article  ADS  Google Scholar 

  43. M. V. Andriyashik, M. Yu. Sakhnovskii, V. B. Timofeev andA. D. Yakimova:Phys. Stat. Sol.,28, 277 (1968).

    Article  ADS  Google Scholar 

  44. V. L. Bakumenko, Z. D. Kovalyuk, L. N. Kurbatov andV. F. Chinshko:Sov. Phys. Semicond.,10, 621, 740 (1976).

    Google Scholar 

  45. See alsoM. Piacentini andC. G. Olson:V International Conference on Vacuum Ultraviolet Radiation Physics (Montpellier, 1977).

  46. E. U. Condon andG. H. Shortley:The Theory of Atomic Spectra (Cambridge, Mass., 1953), p. 122.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doni, E., Girlanda, R., Grasso, V. et al. Electronic properties of the III–VI layer compounds GaS, GaSe and InSe. I: Band structure. Nuov Cim B 51, 154–180 (1979). https://doi.org/10.1007/BF02743704

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02743704

Navigation