Skip to main content
Log in

The diffusion equation for a particle in a zero-point field: A free particle in a finite volume

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The stochastic motion in one dimension of a free particle in a finite volume, subjected to a zero-point-field of random forces, is considered. The velocity of the particle is split, as usual, into a stochastic plus a stationary component, depending upon the coordinate only. The modified Hamilton-Jacobi equation for the deterministic component is then solved, and the resulting zeroth-order trajectories are computed. The diffusion equation can be written down in terms of the stationary drift component of the velocity, which turns out to be dependent upon a parameter γ, which characterizes the uncertainty in the velocity polarization, and the resulting flux through the walls. The zeroth-order trajectories can hence be classified following this parameter, which indicates a transition between two different regimes for some value lying between 0 and 1. For each type a diffusion equation in configuration space is obtained, together with an expression for the particle number flux in steady state. It is then briefly examined the effects of introducing a cut-off frequency into the zero-point spectrum, and a comparison with previous treatments of the same problem is made. It is found that the diffusion equations for non-zero values of γ are of a new type which had not been considered before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Fox:Phys. Rep. C,48, 181 (1978).

    Article  ADS  Google Scholar 

  2. J. H. Van Vleck:Phys. Rev.,24, 330, 347 (1924).

    Article  ADS  Google Scholar 

  3. T. H. Boyer:Phys. Rev. D,11, 790 (1975).

    Article  ADS  Google Scholar 

  4. T. H. Boyer:Phys. Rev. D,11, 809 (1975).

    Article  ADS  Google Scholar 

  5. T. W. Marshall:Proc. R. Soc. London, Ser. A,276, 475 (1963).

    Article  ADS  Google Scholar 

  6. L. de La Pena-Auerbach andA. M. Cetto:J. Math. Phys. (N.Y.),18, 1612 (1977).

    Article  ADS  Google Scholar 

  7. P. Claverie andS. Diner:Int. J. Quantum Chem.,12 (Suppl. 1), 41 (1977).

    Google Scholar 

  8. L. Landau andE. Lifshitz:Fisica Statistica (Editori Riuniti, Roma, 1981), Chapt. VI.

  9. G. H. Goedecke:Found. Phys.,13, 1101 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  10. G. H. Goedecke:Found. Phys.,13, 1121 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. S. Davydov:Meccanica Quantistica (Editori Riuniti, Roma, 1981), Chapt. XI.

    Google Scholar 

  12. H. B. Callen andT. H. Welton:Phys. Rev.,83, 34 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  13. P. A. M. Dirac:Proc. R. Soc. London. Ser. A,167, 148 (1938).

    Article  ADS  Google Scholar 

  14. M. Surdin:Int. J. Theor. Phys.,4, 117 (1971).

    Article  Google Scholar 

  15. L. de La Pena-Auerbach andA. Jauregui:J. Math. Phys.,24, 2751 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. San Miguel andJ. M. Sancho:J. Stat. Phys.,22, 5 (1980).

    Article  Google Scholar 

  17. M. San Miguel andJ. M. Sancho:Phys. Lett. A,76, 97 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Battezzati:Nuovo Cimenta B,70, 13 (1982).

    Article  ADS  Google Scholar 

  19. H. Dekker:Phys. Lett. A,90, 26 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  20. V. S. Volkov andV. N. Pokrovski:J. Math. Phys.,24, 267 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Battezzati:Can. J. Phys.,68, 508 (1990).

    Article  ADS  Google Scholar 

  22. M. Battezzati:Chem. Phys. Lett,164, 363 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Battezzati:Chem. Phys. Lett.,167, 137 (1990).

    Article  ADS  Google Scholar 

  24. F. Seitz:The Modern Theory of Solids (McGraw-Hill, New York and London, 1940), Chapt. VIII.

    Google Scholar 

  25. M. Battezzati:Nuovo Cimento B,107, 669 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Kubo: inFluctuation, Relaxation and Resonance in Magnetic Systems (Oliver and Boyd, Edinburgh, 1962).

    Google Scholar 

  27. N.G. Van Kampen:Phys. Rep.,24, 171 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  28. L. Landau andE. Lifshitz:Théorie des champs (Mir, Moscow, 1970), Chapt. IX.

    Google Scholar 

  29. T. H. Boyer:Phys. Rev.,182, 1374 (1968).

    Article  ADS  Google Scholar 

  30. A. Rueda:Phys. Rev. A,23, 2020 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  31. G. W. Ford andR. F. O’Connell:Phys. Lett. A,157, 217 (1991).

    Article  ADS  Google Scholar 

  32. G. W. Ford andR. F. O’Connell:Phys. Lett A,158, 31 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battezzati, M. The diffusion equation for a particle in a zero-point field: A free particle in a finite volume. Nuov Cim B 108, 559–585 (1993). https://doi.org/10.1007/BF02742811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02742811

PACS

PACS

PACS

Navigation