Skip to main content
Log in

Molecular investigations on the nicotinic acetylcholine receptor

Conformational mapping and dynamic exploration using photoaffinity labeling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The nicotinic acetylcholine receptor (nAChR) is a well-understood member of the ligand-gated ion channels superfamily. The members of this signaling proteins group, including 5HT3, GABAA, glycine, and ionotropic glutamate receptors, are thought to share common secondary, tertiary, and quaternary structures on the basis of a very high degree of sequence similarity. Despite the absence of X-ray crystallographic data, considerable progress on structural analysis of nAChR was achieved from biochemical, mutational, and electron microscopy data allowing the emergence of a three-dimensional image. Photoaffinity labeling and site-directed mutagenesis gave information on the tertiary structure with respect to the agonist/antagonist binding sites, the ion channel, and its selectivity filter.

nAChR is an allosterical protein that undergoes interconversion among several conformational states. Time-resolved photolabeling was used in an attempt to elucidate the structural changes that occur in nAChR on neurotransmitter activation. Tertiary and quaternary rearrangements were found in the cholinergic binding pocket and in the channel lumen, but the structural determinant and the functional link between the binding of agonist and the channel gating remain unknown. Time-resolved photolabeling of the functional activated A state using photosensitive agonists might help in understanding the dynamic process leading to the interconversion of the different states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nAChR:

nicotinic acetylcholine receptor

ACh:

acetylcholine

NCB:

noncompetitive channel blocker

[3H]MBTA:

N-(4-maleimido)benzyltrimethylammonium iodide

[3H]DDF:

[3H]p-(N,N-dimethylamino) benzenediazonium fluoroborate

[3H]CPZ:

[3H]chloropromazine

[3H]TPMP:

[3H]triphenylmethylphosphonium cation

[125I]TID:

3-trifluoromethyl-3-(-m-[125I]iodophenyl)diazirine

[3H]QA:

[3H]quinacrine azide

[3H]DAF:

2-[3H]diazofluorene

[3H]DCTA:

[3H]diazocyclohexadienoylpropyl, trimethyammonium

References

  1. Galzi J. L. and Changeux J. P. (1995) Neuronal nicotinic receptors: molecular organization and regulations.Neuropharmacology 34, 563–582.

    Article  PubMed  CAS  Google Scholar 

  2. Role L. W. and Berg D. K. (1996) Nicotinic receptors in the development and modulation of CNS synapses.Neuron 16, 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  3. Hucho F., Tsetlin V. I., and Machold J. (1996) The emerging three-dimensional structure of a receptor. The nicotinic acetylcholine receptor.Eur. J. Biochem. 239, 539–557.

    Article  PubMed  CAS  Google Scholar 

  4. Lena C. and Changeux J. P. (1998) Allosteric nicotinic receptors, human pathologies.J. Physiol. Paris 92, 63–74.

    Article  PubMed  CAS  Google Scholar 

  5. Engel A. G., Ohno K., and Sine S. M. (1998) Congenital myasthenic syndromes: experiments of nature.J. Physiol. Paris 92, 113–117.

    Article  PubMed  CAS  Google Scholar 

  6. Changeux J. P. and Edelstein S. J. (1998) Allosteric receptors after 30 years.Neuron 21, 959–980.

    Article  PubMed  CAS  Google Scholar 

  7. Heidmann T. and Changeux J. P. (1979) Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor fromTorpedo marmorata.Eur. J. Biochem. 94, 255–279.

    Article  PubMed  CAS  Google Scholar 

  8. Heidmann T., Bernhardt J., Neumann E., and Changeux J. P. (1983) Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes fromTorpedo marmorata.Biochemistry 22, 5452–5459.

    Article  PubMed  CAS  Google Scholar 

  9. Feltz A. and Trautmann A. (1982) Desensitization at the frog neuromuscular junction: a biphasic process.J. Physiol. 322, 257–272.

    PubMed  CAS  Google Scholar 

  10. Boyd N. D. and Cohen J. B. (1980) Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine toTorpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor.Biochemistry 19, 5344–5353.

    Article  PubMed  CAS  Google Scholar 

  11. Krodel E. K., Beckman R. A., and Cohen J. B. (1979) Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated fromTorpedo marmorata electric tissue.Mol. Pharmacol. 15, 294–312.

    PubMed  CAS  Google Scholar 

  12. Heidmann T., Oswald R. E., and Changeux J. P. (1983) Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from torpedo marmorata.Biochemistry 22, 3112–3127.

    Article  PubMed  CAS  Google Scholar 

  13. Numa S. (1989) A molecular view of neurotransmitter receptors and ionic channels.Harvey Lecture Series 83, 121–165.

    Google Scholar 

  14. Langenbuch-Cachat J., Bon C., Mulle C., Goeldner M., Hirth C., and Changeux J. P. (1988) Photoaffinity labeling of the acetylcholine binding sites on the nicotinic receptor by an aryldiazonium derivative.Biochemistry 27, 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  15. Dennis M., Giraudat J., Kotzyba-Hibert F., Goeldner M., Hirth C., Chang J. Y., et al. (1988) Amino acids on theTorpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site.Biochemistry 27, 2346–2357.

    Article  PubMed  CAS  Google Scholar 

  16. Galzi J. L., Revah F., Black D., Goeldner M., Hirth, C., and Changeux J. P. (1990) Identification of a novel amino acid alpha-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites.J. Biol. Chem. 265, 10,430–10,437.

    CAS  Google Scholar 

  17. Galzi J. L., Revah F., Bouet F., Menez A., Goeldner M., Hirth C., et al. (1991) Allosteric transitions of the acetylcholine receptor probed at the amino acid level with a photolabile cholinergic ligand.Proc. Natl. Acad. Sci. USA 88, 5051–5055.

    Article  PubMed  CAS  Google Scholar 

  18. White B. H. and Cohen J. B. (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.J. Biol. Chem. 267, 15,770–15,783.

    CAS  Google Scholar 

  19. Heidmann T. and Changeux J. P. (1984) Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations.Proc. Natl. Acad. Sci. USA 81, 1897–1901.

    Article  PubMed  CAS  Google Scholar 

  20. Heidmann T. and Changeux J. P. (1986) Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: additional evidence for the open channel conformation.Biochemistry 25, 6109–6113.

    Article  PubMed  CAS  Google Scholar 

  21. Fahr A., Lauffer L., Schmidt D., Heyn M. P., and Hucho F. (1985) Covalent labeling of functional states of the acetylcholine receptor. Effects of antagonists on the receptor conformation.Eur. J. Biochem. 147, 483–487.

    Article  PubMed  CAS  Google Scholar 

  22. Muhn P., Fahr A., and Hucho F. (1984) Rapid laser flash photoaffinity labeling of binding sites for a noncompetitive inhibitor of the acetylcholine receptor.Biochemistry 23, 2725–2730.

    Article  PubMed  CAS  Google Scholar 

  23. Cox R. N., Kaldany R. R., DiPaola M., and Karlin A. (1985) Time-resolved photolabeling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine receptor in a transient, agonist-induced state.J. Biol. Chem. 260, 7186–7193.

    PubMed  CAS  Google Scholar 

  24. DiPaola M., Kao P. N., and Karlin A. (1990) Mapping the alpha-subunit site photolabeled by the noncompetitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor.J. Biol. Chem. 265, 11,017–11,029.

    CAS  Google Scholar 

  25. Karlin A. (1991) Explorations of the nicotinic acetylcholine receptor.Harvey Lectures 71–107.

  26. Chatrenet B., Tremeau O., Bontems F., Goeldner M. P., Hirth C. G. and Menez A. (1990) Topography of toxin-acetylcholine receptor complexes by using photoactivable toxin derivatives.Proc Natl Acad Sci USA 87, 3378–3382.

    Article  PubMed  CAS  Google Scholar 

  27. Kubalek E., Ralston S., Lindstrom J., and Unwin N. (1987) Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals fromTorpedo marmorata.J. Cell. Biol. 105, 9–18.

    Article  PubMed  CAS  Google Scholar 

  28. Blount P. and Merlie J. P. (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor.Neuron 3, 349–357.

    Article  PubMed  CAS  Google Scholar 

  29. Sine S. M. and Claudio T. (1991) Gamma- and delta-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor.J. Biol. Chem. 266, 19,369–19,377.

    CAS  Google Scholar 

  30. Machold J., Weise C., Utkin Y., Franke P., Tsetlin V., and Hucho F. (1995) A new class of photoactivatable and cleavable derivatives of neurotoxin II from Naja maja oxiana.Eur. J. Biochem. 228, 947–954.

    Article  PubMed  CAS  Google Scholar 

  31. Pedersen S. E. and Cohen J. B. (1990) d-Tubocurarine binding sites are located at alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor.Proc Natl Acad Sci USA 87, 2785–2789.

    Article  PubMed  CAS  Google Scholar 

  32. Myers R. A., Zafaralla G. C., Gray W. R., Abbott J., Cruz L. J., and Olivera B. M. (1991) alpha-Conotoxins, small peptide probes of nicotinic acetylcholine receptors.Biochemistry 30, 9370–9377.

    Article  PubMed  CAS  Google Scholar 

  33. Sine S. M., Kreienkamp H. J., Bren N., Maeda R., and Taylor P. (1995) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin M1 selectivity.Neuron 15, 205–211.

    Article  PubMed  CAS  Google Scholar 

  34. Chiara D. C. and Cohen J. B. (1997) Identification of amino acids contributing to high and low affinityd-tubocurarine sites in theTorpedo nicotinic acetylcholine receptor.J. Biol. Chem. 272, 32,940–32,950.

    Article  CAS  Google Scholar 

  35. Middelton R. E. and Cohen B. C. (1991) Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]Nicotine as an agonist photoaffinity label.Biochemistry 30, 6987–6997.

    Article  Google Scholar 

  36. Chiara D. C., Middleton R. E., and Cohen J. B. (1998) Identification of tryptophan 55 as the primary site of [3H] nicotine photoincorporation in the gamma-subunit of the Torpedo nicotinic acetylcholine receptor.FEBS Lett. 423, 223–226.

    Article  PubMed  CAS  Google Scholar 

  37. Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., et al. (1984) Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site.J. Biol. Chem. 259, 11,662–11,665.

    CAS  Google Scholar 

  38. Abramson S. N., Li Y., Culver P., and Taylor P. (1989) An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor.J. Biol. Chem. 264, 12,666–12,672.

    CAS  Google Scholar 

  39. Cohen J. B., Sharp S. D., and Liu W. S. (1991) Structure of the agonist-binding site of the nicotinic acetylcholine receptor. [3H]acetylcholine mustard identifies residues in the cation-binding subsite.J. Biol. Chem. 266, 23,354–23,364.

    CAS  Google Scholar 

  40. Czajkowski C. and Karlin A. (1991) Agonist binding site of Torpedo electric tissue nicotinic acetylcholine receptor. A negatively charged region of the delta subunit within 0.9 nm of the alpha subunit binding site disulfide.J. Biol. Chem. 266, 22,603–22,612.

    CAS  Google Scholar 

  41. Martin M., Czajkowski C., and Karlin A. (1996) The contributions of aspartyl residues in the acetylcholine receptor gamma and delta subunits to the binding of agonists and competitive antagonists.J. Biol. Chem. 271, 13,497–13,503.

    CAS  Google Scholar 

  42. Martin M. D. and Karlin A. (1997) Functional effects on the acetylcholine receptor of multiple mutations of gamma Asp174 and delta Asp180.Biochemistry 36, 10,742–10,750.

    Article  CAS  Google Scholar 

  43. Prince R. J. and Sine S. M. (1996) Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity.J. Biol. Chem. 271, 25,770–25,777.

    CAS  Google Scholar 

  44. O'Leary M. E. and White M. M. (1992) Mutational analysis of ligand-induced activation of theTorpedo acetylcholine receptor.J. Biol. Chem. 267, 8360–8365.

    PubMed  Google Scholar 

  45. Tomaselli G. F., McLaughlin J. T., Jurman M. E., Hawrot E., and Yellen G. (1991) Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor.Biophys. J. 60, 721–727.

    Article  PubMed  CAS  Google Scholar 

  46. Galzi J. L., Bertrand D., Devillers-Thiery A., Revah F., Bertrand S., and Changeux J. P. (1991) Functional significance of aromatic amino acids from three peptide loops of the alpha 7 neuronal nicotinic receptor site investigated by site-directed mutagenesis.FEBS Lett. 294, 198–202.

    Article  PubMed  CAS  Google Scholar 

  47. Sine S. M., Quiram P., Papanikolaou F., Kreienkamp H. J., and Taylor P. (1994) Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists.J. Biol. Chem. 269, 8808–8816.

    PubMed  CAS  Google Scholar 

  48. Corringer P. J., Galzi J. L., Eisele J. L., Bertrand S., Changeau J. P., and Bertrand D. (1995) Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric reeptor.J. Biol. Chem. 270, 11,749–11,752.

    CAS  Google Scholar 

  49. Devillers-Thiery A., Giraudat J., Bentabollet M., and Changeux J. P. (1983) Complete mRNA coding sequence of the acetylcholine binding alpha-subunit ofTorpedoP marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain.Proc. Natl. Acad. Sci. USA 80, 2067–2071.

    Article  PubMed  CAS  Google Scholar 

  50. Claudio T., Ballivet M., Patrick J., and Heinemann S. (1983) Nucleotide and deduced amino acid sequences ofTorpedo californica acetylcholine receptor gamma subunit.Proc. Natl. Acad. Sci. USA 80, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  51. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., et al. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits.Nature 302, 528–532.

    Article  PubMed  CAS  Google Scholar 

  52. Bertrand D., Galzi J. L., Devillers-Thiery A., Bertrand S., and Changeux J. P. (1993) Stratification of the channel domain in neurotransmitter receptors.Curr Opin Cell Biol. 5, 688–693.

    Article  PubMed  CAS  Google Scholar 

  53. Giraudat J., Dennis M., Heidmann T., Chang J. Y., and Changeux J. P. (1986) Structure of the high-affinity binding site for noncompetivite blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]chlorpromazine.Proc. Natl. Acad. Sci. USA 83, 2719–2723.

    Article  PubMed  CAS  Google Scholar 

  54. Giraudat J., Dennis M., Heidmann T., Haumont P. Y., Lederer F., and Changeux J. P. (1987) Structure of the high-affinity binding site for non-competitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the beta and delta chains.Biochemistry 26, 2410–2418.

    Article  PubMed  CAS  Google Scholar 

  55. Revah F., Galzi J. L., Giraudat J., Haumont P. Y., Lederer F., and Changeux J. P. (1990) The non-competitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel.Proc. Natl. Acad. Sci. USA,87, 4675–4579.

    Article  PubMed  CAS  Google Scholar 

  56. Hucho F., Oberthur W., and Lottspeich F. (1986) The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits.FEBS Lett. 205, 137–142.

    Article  PubMed  CAS  Google Scholar 

  57. Pedersen S. E., Sharp S. D., Liu W. S., and Cohen J. B. (1992) Structure of the noncompetitive antagonist-binding site of the Torpedo nicotinic acetylcholine receptor. [3H] meproadifen mustard reacts selectively with alpha-subunit Glu-962.J. Biol. Chem. 267, 10,489–10,499.

    CAS  Google Scholar 

  58. Revah F., Bertrand D., Galzi J. L., Devillers-Thiery A., Mulle C., Hussy N., et al. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor.Nature 353, 846–849.

    Article  PubMed  CAS  Google Scholar 

  59. Bertrand D., Devillers-Thiery A., Revah F., Galzi J. L., Hussy N., Mulle C., et al. (1992) Uncoventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain.Proc. Natl. Acad. Sci. USA 89, 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  60. Akabas M. H., Stauffer D. A., Xu M., and Karlin A. (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants.Science 258, 307–310.

    Article  PubMed  CAS  Google Scholar 

  61. Galzi J. L., Edelstein S. J., and Changeux J. (1996) The multiple phenotypes of allosteric receptor mutants.Proc. Natl. Acad. Sci. USA 93, 1853–1858.

    Article  PubMed  CAS  Google Scholar 

  62. Wu G., Raines D. E., and Miller K. W. (1994) A hydrophobic inhibitor of the nicotinic acetylcholine receptor acts on the resting state.Biochemistry 33, 15,375–15,381.

    CAS  Google Scholar 

  63. Blanton M. P., Dangott L. J., Raja S. K., Lala A. K., and Cohen J. B. (1998) Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound-3H-diazofluorene.J. Biol. Chem. 273, 8659–8668.

    Article  PubMed  CAS  Google Scholar 

  64. Armstrong N., Sun Y., Chen G. Q., and Gouaux E. (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate.Nature 395, 913–917.

    Article  PubMed  CAS  Google Scholar 

  65. Opella S. J., Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., et al. (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy.Nat. Struct. Biol. 6, 374–379.

    Article  PubMed  CAS  Google Scholar 

  66. Oblatt-Montal M., Buhler L. K., Iwamoto T., Tomich J. M., and Montal M. (1993) Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure.J. Biol. Chem. 268, 14,601–14,607.

    CAS  Google Scholar 

  67. Unwin N. (1995) Acetylcholine receptor channel imaged in the open state.Nature 373, 37–43.

    Article  PubMed  CAS  Google Scholar 

  68. Blanton M. P. and Cohen J. B. (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications.Biochemistry 33, 2859–2872.

    Article  PubMed  CAS  Google Scholar 

  69. Fahr A. and Hucho F. (1986) A stopped-flow apparatus for photoaffinity labeling studies in the milliseconds time range. Application in investigations of the nicotinic acetylcholine receptor.J. Neurosci. Methods 16, 29–38.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson D. A. and Ayres S. (1996) Quinacrine noncompetitive inhibitor binding site localized on theTorpedo acetylcholine receptor in the open state.Biochemistry 35, 6330–6336.

    Article  PubMed  CAS  Google Scholar 

  71. Lurtz M. M., Hareland M. L., and Pedersen S. E. (1997) Quinacrine and ethidium bromide bind the same locus on the nicotinic acetylcholine receptor fromTorpedo californica.Biochemistry 36, 2068–2075.

    Article  PubMed  CAS  Google Scholar 

  72. Akabas M. H. and Karlin A. (1995) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the alpha-subunit.Biochemistry 34, 12,496–12,500.

    Article  CAS  Google Scholar 

  73. Zhang H. and Karlin A. (1997) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit.Biochemistry 36, 15,856–15,864.

    CAS  Google Scholar 

  74. Kim J. and mcNamee M. G. (1998) Topological disposition of Cys 222 in the alpha-subunit of nicotinic acetylcholine receptor analyzed by fluorescence-quenching and electron paramagnetic resonance measurements.Biochemistry,37, 4680–4686.

    Article  PubMed  CAS  Google Scholar 

  75. Ortells M. O. and Lunt G. G. (1994) The transmembrane region of the nicotinic acetylcholine receptor: is it an all-helix bundle?Receptors Channels 2, 53–59.

    PubMed  CAS  Google Scholar 

  76. Ortells M. O., Barrantes G. E., Wood C., Lunt G. G., and Barrantes F. J. (1997) Molecular modelling of the nicotinic acetylcholine receptor transmembrane region in the open state.Protein Eng 10, 511–517.

    Article  PubMed  CAS  Google Scholar 

  77. Kotzyba-Hibert F., Kapfer I., and Goeldner M. (1995) Recent trends in photoaffinity labeling.Angew. Chem. Int. Ed. Engl. 34, 1296–1312.

    Article  CAS  Google Scholar 

  78. Chatrenet B., Kotzyba-Hibert F., Mulle C., Changeux J. P., Goeldner M. P., and Hirth C. (1992) Photoactivable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor.Mol. Pharmacol. 41, 1100–1106.

    PubMed  CAS  Google Scholar 

  79. Kotzyba-Hibert F., Kessler P., Zerbib V., Bogen C., Snetkov V., Takeda K., et al. (1996) Novel photoactivatable agonist of the nicotinic acetylcholine receptor of potential use for exploring the functional activated state.J. Neurochem. 67, 2557–2565.

    Article  PubMed  CAS  Google Scholar 

  80. Alcaraz M. L., Peng L., Klotz P., and Goeldner M. (1996) Synthesis and properties of photoactivatable phospholipid derivatives designed to probe the membrane-associated domains of proteins.J Org Chem 61, 192–201.

    Article  CAS  Google Scholar 

  81. Kotzyba-Hibert F., Kessler P., Zerbib V., Grutter T., Bogen C., Takeda K., et al. (1997) Nicotinic acetylcholine receptor labeled with a tritiated, photoactivable agonist: a new tool for investigating the functional, activated state.Bioconjug. Chem. 8, 472–480.

    Article  PubMed  CAS  Google Scholar 

  82. Grutter T., Goeldner M., and Kotzyba-Hibert F. (1999) Nicotinic acetylcholine receptor probed with a photoactivatabl agonist: improved labeling specificity by addition of CeIV/glutathione. Extension to laser flash photolabelingBiochemistry 38, 7476–7484.

    Article  PubMed  CAS  Google Scholar 

  83. Huganir R. L. and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation.Neuron 5, 555–567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotzyba-Hibert, F., Grutter, T. & Goeldner, M. Molecular investigations on the nicotinic acetylcholine receptor. Mol Neurobiol 20, 45–59 (1999). https://doi.org/10.1007/BF02741364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741364

Index Entries

Navigation